
Math 122 Homework #3 Due: Friday 21 April 2017

Reading: Ch 10.3 & pp 911–913.

Summary of definitions and main results

Definitions we’ve covered: generators of an R–module, the R–submodule RA generated by a set A, fi-
nite generation, cyclic module, Noetherian R–module, minimal set of generators, direct product, direct sum
(externel and internal), R–linear independence, free module, basis, rank of a free module, universal property,
category, object, morphism, functor, coproduct, abelianization.

Main results: Examples of non-Noetherian modules, equivalent definitions of (internal) direct sums, Chi-
nese remainder theorem, universal property for free modules, construction of the free module F (A), verifica-
tion that F (A) satisfies the universal property, universal properties define objects up to unique isomorphism.

Warm-Up Questions

The “warm-up” questions do not need to be submitted (and won’t be graded).

1. Let A and B be R–submodules of an R–module M .

(a) Prove that the sum A+B is an R–submodule of M .

(b) Verify that A+B is equal to R(A ∪B), the submodule generated by A ∪B, as submodules of M .

(c) Prove that A+B is the smallest submodule of M containing A and B in the following sense: if any
submodule N of M contains both A and B, then N contains A+B.

2. Use the first isomorphism theorem to prove that if x ∈ R then the cyclic module Rx is isomorphic to
the R–module R/ann(x). Deduce that if R is an integral domain, then Rx ∼= R as R–modules.

3. Let R be a ring and I a two-sided ideal of R. For each of the following R–modules M indicate whether
M is finitely generated, cyclic, or more information is needed:
M = Rn for n ∈ N, polynomials M = R[x], series M = R[[x]], M = I, and M = R/I.

4. Prove that if M is a finitely generated R–module, and φ : M → N a map of R–modules, then its image
φ(M) is finitely generated by the images of the generators. Conclude in particular that all quotients of
finitely generated modules are finitely generated.

5. (a) Let F be a field. Citing results from linear algebra, explain why every finitely generated F–module
is Noetherian.

(b) Citing results from group theory, explain why every finitely generated Z–module is Noetherian.

6. (a) Suppose a finitely generated R–module M has a minimal generating set A = {a1, a2, . . . , an}.
Prove or find a counterexample: M ∼= Ra1 ⊕Ra2 ⊕ · · · ⊕Ran.

(b) Suppose an R–module M can be decomposed M ∼= Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ran for some finite set
A = {a1, a2, . . . , an} ⊆M . Prove or find a counterexample: A is a minimal generating set for M .

7. (a) Let A be any finite set of n elements. Show that the free R–module on A is isomorphic as an
R–module to Rn.

(b) For R commutative, are the polynomial rings R[x] and R[x, y] free R–modules? What about Laurent
polynomials R[x, x−1]? Rational functions in x?

(c) Do these arguments work for series R[[x]]?

8. Show that M = Z/10Z⊕Z/10Z is a free Z/10Z–module by finding a basis. Show that the element (2, 2)
cannot be an element of any basis for M . Is the submodule N = Z/5Z⊕ Z/10Z also free?
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9. Show that M = Z/6Z ⊕ Z/6Z is a rank-2 free module over Z/6Z, and find necessary and sufficient
conditions on a pair of elements {a, b} ⊂M to be a basis for M .

10. (a) Show that A is a basis for the R–module RA it generates if and only if A is R–linearly independent.

(b) Find a counterexample to the following false statement: If M is a free R–module and A ⊆M is an
R–linearly independent subset of M , then A can be extended to a basis for M .

(c) (Challenge) Show that a Z–linearly independent subset B of the free abelian group ZN can be
extended to a basis for ZN if and only if ZB is splittable in the sense of Homework #1 Bonus.

11. (a) Let F be the free R–module on a set A. Show that if R has no zero divisors and N ⊆ M is any
nonzero submodule, then ann(N) = {0}.

(b) Let R = Z/10Z and let F ∼= R2 be the free R–module of rank 2. Compute the annihilator of the
submodule 2F .

12. In class (and in Dummit-Foote 10.3 Theorem 6) we gave a construction of a free module F (A) on a set
A. Verify that this construction is in fact a free module with basis A (as given in the definition on p354).
Show moreover that F (A) ∼=

⊕
AR.

13. (a) Citing results from linear algebra, explain why every vector space over a field F is a free F–module.

(b) When F is a field, any minimal finite generating set B = {a1, . . . , an} of an F–module must be
linearly independent and therefore a basis. Prove that in general, if an R–module has a minimal
generating set B = {a1, . . . , an}, then R need not be free on B.

(c) Suppose that M is an R–module containing elements {a1, a2, . . . , an} such that M = Ra1 ⊕Ra2 ⊕
· · · ⊕Ran. Explain how A = {a1, a2, . . . an} could fail to be a basis for M . What conditions on the
elements ai could ensure that A is a basis?

14. Let R be a ring, M and R–module and N an R–submodule of N .

(a) Show that M/N satisfies the following universal property: If ϕ : M → Q is any map of R–modules
satisfying φ(n) = 0 for all n ∈ N , then ϕ factors uniquely through M/N .

(b) Show that this universal property defines the quotient M/N uniquely up to unique isomorphism.

15. (Group theory review)

(a) Given the finitely generated abelian group M = Z/m1Z× Z/m2Z× · · · × Z/mNZ, explain how to
write M as a product with the minimal number of cyclic factors.

(b) Find a minimal generating set for the groups

Z/4Z× Z/2Z, Z/2Z× Z/2Z× Z/3Z, and Z/4Z× Z/2Z× Z/3Z× Z/3Z.

16. (Linear algebra review) Let V,W be vector spaces over a field F of dimension n and m, respectively.

(a) Consider a linear map A : V → V (equivalently, of an n × n matrix A). Show that the following
are equivalent. If A satisfies any of these conditions, it is called singular.

1. A has a nontrivial kernel

2. rank(A) < n

3. A is not invertible

4. The columns of A are linearly dependent

5. The rows of A are linearly dependent

6. det(A) = 0

7. λ = 0 is an eigenvalue of A

(b) Let T be a linear transformation on a finite-dimensional F-vector space V . Show that the following
are equivalent

1. λ is an eigenvalue of T

2. (λI − T ) is singular

3. λ is a root of the characteristic polynomial of T , pT (x) = det(xI − T ).
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Assignment Questions

1. (a) (Chinese Remainder Theorem) Let R be any ring, and let I1, . . . Ik be two-sided ideals of R
such that Ii+Ij = R for any i 6= j (such ideals are called comaximal). Prove there is an isomorphism
of R–modules

R

(I1 ∩ I2 ∩ · · · ∩ Ik)
∼=
R

I1
× R

I2
× · · · × R

Ik
.

(b) Conclude that for pairwise coprime integers, m1,m2, . . . ,mk, there is an isomorphism of groups

Z/m1m2 · · ·mkZ ∼= Z/m1Z× Z/m2Z× · · · × Z/mkZ.

2. (a) Let A1, A2, . . . , An be R–modules, and Bi ⊆ Ai a submodule for each i. Show that

A1 ×A2 × · · · ×An

B1 ×B2 × · · · ×Bn

∼=
A1

B1
× A2

B2
× · · · × An

Bn
.

(b) Let R be a commutative ring, and let n,m ∈ N. Prove that that Rn ∼= Rm if and only if n = m.
You may assume without proof that finite-dimensional vector spaces are isomorphic if and only if
their dimensions are equal. You may also assume Zorn’s Lemma. Hint: Dummit–Foote 10.3 # 2.

3. (Coproducts). Let C be a category with objects X and Y . The coproduct of X and Y (if it exists) is an
object X

∐
Y in C with maps fx : X → X

∐
Y and fy : Y → X

∐
Y satisfying the following universal

property: whenever there is an object Z with maps gx : X → Z and gy : Y → Z, there exists a unique
map u : X

∐
Y → Z that makes the following diagram commute:

Z

X

gx

;;

fx

// X
∐
Y

∃!u

OO

Y

gy

bb

fy

oo

(a) Let X and Y be objects in C. Show that, if the coproduct (X
∐
Y, fx, fy) exists in C, then the

universal property determines it uniquely up to unique isomorphism.

(b) Prove that in the category of R–modules, the coproduct of R–modules X
∐
Y is X ⊕ Y with the

canonical inclusions of X and Y . In other words, this universal property defines the direct sum
operation on R–modules.

(c) Explain how to reinterpret this universal property for the direct sum of R–modules as a bijection
of sets

HomR(X ⊕ Y,Z) ∼= HomR(X,Z)×HomR(Y,Z)

for R–modules X,Y, Z.

(d) Prove that in the category of groups, the univeral property for the coproduct X
∐
Y of groups X

and Y does not define the direct product of those groups along with their canonical inclusions. (It
is a construction called the free product of groups).

(e) Prove that in the category of sets, the coproduct X
∐
Y of sets X and Y is their disjoint union.

4. (Abelianization). Let Grp denote the category of groups and group homomorphisms, and let Ab

denote the category of abelian groups and group homomorphisms. Define the abelianization Gab of a
group G to be the quotient of G by its commutator subgroup [G,G], the subgroup normally generated
by commutators, elements of the form ghg−1h−1 for all g, h ∈ G.

(a) Define a map of categories [−,−] : Grp → Grp that takes a group G to its commutator subgroup
[G,G], and a group morphism f : G → H to its restriction to [G,G]. Check that this map is well
defined (ie, check that f([G,G]) ⊆ [H,H]) and verify that [−,−] is a functor.
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(b) Show that Gab is an abelian group. Show moreover that if G is abelian, then G = Gab.

(c) Show that the quotient map G→ Gab satisfies the following universal property: Given any abelian
groupH and group homomorphism f : G→ H, there is a unique group homomorphism f : Gab → H
that makes the following diagram commute:

G

��

f // H

Gab
∃! f

==

This universal property shows that Gab is in a sense the “largest” abelian quotient of G.

(d) Show that the map ab that takes a group G to its abelianization Gab can be made into a functor
ab : Grp→ Ab by explaining where it maps morphisms of groups f : G→ H, and verifying that it
is functorial.

(e) The category Ab is a subcategory of Grp. Define the functor A : Ab → Grp to be the inclusion
of this subcategory; A takes abelian groups and group homomorphisms in Ab to the same abelian
groups and the same group homomorphisms in Grp. Briefly explain why the universal property
in Part (c) can be rephrased as follows: Given groups G ∈ Grp and H ∈ Ab, there is a natural
bijection between the sets of morphisms:

HomGrp(G,A(H)) ∼= HomAb(Gab, H)

Remark: Since this bijection is “natural” (a condition we won’t formally define or check) it means
that A : Ab→ Grp and ab : Grp→ Ab are what we call a pair of adjoint functors.

5. Bonus Warm-up Question (Optional, not for credit). Let {Mi | i ∈ I} be a (possibly infinite)
set of R–modules with index set I. We define the direct product of these modules to be∏

i∈I
Mi = {(mi)i∈I | mi ∈Mi}

When I is finite or countable, we can express elements as ordered tuples (m1,m2, . . . ,mn, . . .). The
direct product forms an R–module under pointwise addition and scalar multiplication. We define the
direct sum of the modules {Mi | i ∈ I} to be the submodule of

∏
i∈I Mi⊕

i∈I
Mi = {(mi)i∈I | mi ∈Mi, mi = 0 for all but at most finitely many i ∈ I}

These definitions coincide when I is finite.

(a) The direct sum
⊕

i∈I Mi is a submodule of the direct product
∏

i∈I Mi, but show by example that
these may not be isomorphic. Hint : What are their cardinalities?

(b) Show that
⊕

i∈I Mi is generated by the set
⋃

i∈I Mi, but that
∏

i∈I Mi may not be.

6. Bonus (Optional).

(a) Let R be a ring. Show that an arbitrary direct sum of free R–modules is free, but an arbitrary
direct product need not be (definitions in Problem (5)). Hint: Dummit–Foote 10.3 # 24.

(b) In Problem (2) we saw that if R is commutative and Rn ∼= Rm, then n = m. Show that this
property fails for noncommutative rings – that is, free R–modules need not have a uniquely defined
rank. Hint: Dummit–Foote 10.3 # 27.
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