Due: Friday 28 April 2017

Reading: Dummit-Foote Ch. 10.5 & pp 911-913.

Summary of definitions and main results

Definitions we've covered: monomorphism, epimorphism, isomorphism, covariant and contravariant functors, forgetful functor, free functor, dual space functor, functors $\operatorname{Hom}_R(D,-)$ and $\operatorname{Hom}_R(-,D)$, exact, exact sequence, short exact sequence, extension of C by A, presentation, split short exact sequence.

Main results: in the category R-mod monomorphisms are precisely the injections, free functor $F : \underline{\operatorname{Set}} \to R-\underline{\operatorname{Mod}}$ is a covariant functor, $\operatorname{Hom}_R(D,-)$ is a covariant functor, Short Five Lemma, Splitting Lemma.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded).

- 1. In this question, we will verify how the universal property defining free modules will fail for modules that are not free. Let $R = \mathbb{Z}$.
 - (a) Consider the abelian group $\mathbb{Z}/m\mathbb{Z}$ and the subset $A = \{1 \pmod m\}$. Show that $\mathbb{Z}/m\mathbb{Z}$ fails to satisfy the universal property for being the free module on the basis A.

 Hint: Consider $M = \mathbb{Z}$ and any nonzero set map $A \to M$.
 - (b) Consider the abelian group \mathbb{Z} and the subset $A = \{2\}$. Show that \mathbb{Z} fails to satisfy the universal property for being the free module on the basis A.

 Hint: Consider $M = \mathbb{Z}$ and the set map taking $2 \in A$ to $1 \in M$.
 - (c) Consider the abelian group $\mathbb{Z} \oplus \mathbb{Z}$ and the subset $A = \{(1,0)\}$. Show that $\mathbb{Z} \oplus \mathbb{Z}$ fails to satisfy the universal property for being the free module on the basis A.
- 2. (a) Prove that in the category of R-modules, a morphism is epic if and only if it is a surjective map.
 - (b) Prove that in the category of rings, the map $\mathbb{Z} \to \mathbb{Q}$ is an epic morphism that is not surjective.
- 3. (a) A zero object $\mathbf{0}$ in a category is an object with the following property: For any object M, there is a unique morphism from M to $\mathbf{0}$, and a unique morphism from $\mathbf{0}$ to M. Show that if a category has a zero object, then it is unique up to unique isomorphism.
 - (b) Let \mathcal{C} be the category of R-modules, and show that the zero module $\{0\}$ is a zero object. This definition allows us to define the zero map 0 between R-modules M and N: it is the composition of the unique map $M \to \mathbf{0}$ with the unique map $\mathbf{0} \to N$.
 - (c) Let \mathcal{C} be the category R-modules. Verify that the kernel of an R-module map satisfies the following universal property. If $f: M \to N$ is a morphism in \mathcal{C} , then define the $kernel\ i: K \to M$ of f to be the map i such that $f \circ i$ is the zero morphism 0

and satisfying the following: whenever there is a map of R-modules $g: P \to M$ such that $f \circ g = 0$, there is a unique map $u: P \to K$ such that $i \circ u = g$. In other words, there is a unique map u that makes the following diagram commute.

Due: Friday 28 April 2017

- (d) Explain why this universal property determines the map $i: K \to M$ up to unique isomorphism. Conclude that this universal property can be taken as the definition of the kernel of f.
- 4. Let \mathscr{C} be a category containing objects A and B, and let F be a functor $F:\mathscr{C}\to\mathscr{D}$. Show that if A and B are isomorphic objects of \mathscr{C} , then F(A) and F(B) will be isomorphic objects of \mathscr{D} .
- 5. Given a group G, define a category \mathscr{G} with a single object \bigstar and morphisms $\operatorname{Hom}_{\mathscr{G}}(\bigstar, \bigstar) = \{g \mid g \in G\}$. The composition law is given by the group operation. Show that a function between groups $G \to H$ is a group homomorphism if and only if the corresponding map between categories $\mathscr{G} \to \mathscr{H}$ is a functor.
- 6. Let \underline{fSet} denote the category of finite sets and all functions between sets. Let $\mathscr{P}: \underline{fSet} \to \underline{fSet}$ be the function that takes a finite set A to its power set $\mathscr{P}(A)$, the set of all subsets of A. If $f: A \to B$ is a function of finite sets, let $\mathscr{P}(f): \mathscr{P}(A) \to \mathscr{P}(B)$ be the function that takes a subset $U \subseteq A$ to the subset $f(U) \subseteq B$.
 - (a) Show that \mathcal{P} is a covariant functor.
 - (b) What if we had instead defined $\mathscr{P}(f):\mathscr{P}(B)\to\mathscr{P}(A)$ to take a subset $U\subseteq B$ to its preimage $f^{-1}(U)\subseteq A$ under f?
- 7. Let 0 denote the trivial abelian group. Give an example of a functor $F: \underline{Ab} \to \underline{Ab}$ such that F(0) = 0, and a functor $F: \underline{Ab} \to \underline{Ab}$ such that $F(0) \neq 0$.
- 8. Write down short exact sequences giving presentations of the following R-modules M. Give a list of generators and relations for M.
 - (a) R^n

(c) $R = \mathbb{Q}, M = \mathbb{Q}[x]/\langle x^2 + 1 \rangle$

(b) $R = \mathbb{Z}, M = \mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$

- (d) $R = \mathbb{C}[x, y], M = \langle x, y \rangle$
- 9. (a) Find two non-isomorphic extensions of \mathbb{Z} -modules $\mathbb{Z}/n\mathbb{Z}$ by \mathbb{Z} .
 - (b) Find two non-isomorphic extensions of \mathbb{Z} -modules $\mathbb{Z}/n\mathbb{Z}$ by $\mathbb{Z}/n\mathbb{Z}$.
 - (c) How many extensions of \mathbb{Z} by $\mathbb{Z}/n\mathbb{Z}$ can you find?
 - (d) Show that if $0 \to U \to W \to V \to 0$ is a short exact sequence of vector spaces, then $W \cong V \oplus U$.
- 10. Use the Splitting Lemma to show that if m and n are coprime, the following short exact sequence splits:

$$0 \longrightarrow \mathbb{Z}/m\mathbb{Z} \xrightarrow{\psi} \mathbb{Z}/mn\mathbb{Z} \xrightarrow{\phi} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0.$$

What if m and n are not coprime?

Due: Friday 28 April 2017

Assignment Questions

- 1. We proved in class that the map $\operatorname{Hom}_R(D,-): R-\operatorname{\underline{Mod}} \to \operatorname{\underline{Ab}}$ is a covariant functor.
 - (a) We have another name for the functor of abelian groups $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, -)$. What is it?
 - (b) To which groups does the functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, -)$ map the \mathbb{Z} -modules \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, $(\mathbb{Z}/n\mathbb{Z})^p$, $\mathbb{Z}/n^p\mathbb{Z}$, and $\mathbb{Z}/m\mathbb{Z}$ (for m, n coprime)? Express your answers in terms of the classification of finitely generated abelian groups. (Since you already proved this result on Homework #1, you may state your solution without proof).
 - (c) Describe the sequence of abelian groups and the maps obtained by applying $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},-)$ to the following short exact sequences:

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\varphi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\psi} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \xrightarrow{\varphi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{\varphi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

In particular, state which resulting sequence is exact.

2. (Short Five Lemma). Consider a homomorphism of short exact sequences of R-modules:

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\varphi} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{\psi'} B' \xrightarrow{\varphi'} C' \longrightarrow 0$$

Prove the remaining step in the Short Five Lemma: If α and γ both surject, then β must also surject.

3. (The Splitting Lemma). Let R be a ring, and consider the short exact sequence of R-modules:

$$0 \longrightarrow A \stackrel{\psi}{\longrightarrow} B \stackrel{\varphi}{\longrightarrow} C \longrightarrow 0.$$

Prove that the following are equivalent.

- (i) The sequence *splits*, that is, B is isomorphic to $A \oplus C$ such that ψ corresponds to the natural inclusion of A, and φ corresponds to the natural projection onto C.
- (ii) There is a map $\varphi': C \to B$ such that $\varphi \circ \varphi'$ is the identity on C.

$$0 \longrightarrow A \stackrel{\psi}{\longrightarrow} B \mathop{\Longrightarrow}\limits_{\varphi'}^{\varphi} C \rightarrow 0$$

(iii) There is a map $\psi': B \to A$ such that $\psi' \circ \psi$ is the identity on A.

$$0 \to A \underset{\psi'}{\overset{\psi}{\rightleftarrows}} B \xrightarrow{\varphi} C \longrightarrow 0$$

The maps φ' and ψ' are called *splitting homomorphisms*.

4. Define a ring R to be (left) Noetherian if R is Noetherian as a left module over itself, that is, every R-submodule of R is finitely generated. In this question we will show this definition is equivalent to the following alternate definition of a Noetherian ring: R is (left) Noetherian if **every** finitely generated left R-module is Noetherian.

- Due: Friday 28 April 2017
- (a) Let $0 \to A \to B \to C \to 0$ be a short exact sequence of R-modules. Show that if A and C are finitely generated R-modules, then B is finitely generated.
- (b) Suppose R is Noetherian as a left R-module. Let M be a submodule of R^n . Consider the short exact sequence of R-modules

$$0 \longrightarrow \{0\} \times R^{n-1} \longrightarrow R^n \xrightarrow{\pi_1} R \longrightarrow 0,$$

(Here, π_1 is the projection onto the first factor of \mathbb{R}^n .) Show that we obtain a short exact sequence

$$0 \longrightarrow M \cap (\{0\} \times R^{n-1}) \longrightarrow M \longrightarrow \pi_1(M) \longrightarrow 0.$$

- (c) Using parts (a) and (b) and induction on n, prove that R^n is a Noetherian R-module.
- (d) Prove that an R-module N is finitely generated if and only if it is quotient of a finite rank free R-module R^n .
- (e) Prove that a quotient of a Noetherian *R*-module is Noetherian.
- (f) Conclude that any finitely generated R-module is Noetherian.
- 5. Bonus (Optional). Let N and M_i be R-modules for i in an index set I.
 - (a) Prove the following isomorphisms of abelian groups:

(i)
$$\operatorname{Hom}_R\left(N, \prod_{i \in I} M_i\right) \cong \prod_{i \in I} \operatorname{Hom}_R(N, M_i)$$
 (ii) $\operatorname{Hom}_R\left(\bigoplus_{i \in I} M_i, N\right) \cong \prod_{i \in I} \operatorname{Hom}_R(M_i, N)$

(b) Use these identifications to define (and verify) universal properties for the direct sum and direct product.