Reading: Dummit-Foote Ch 10.4.

Summary of definitions and main results

Definitions we've covered: tensor product of modules (as an abelian group), (S, R)-bimodule, tensor product of modules (as an S-module), R-balanced map, R-bilinear map, universal property of the tensor product (version for abelian groups, and version for R-module structure when R is commutative), tensor product of maps, extension of scalars.

Main results: Explicit construction of the tensor product $M \otimes_{R} N$, verification that the construction satisfies the universal property, $R / I \otimes_{R} N \cong N / I N$, tensor product distributes over direct sums, $R^{n} \otimes_{R} N \cong$ N^{n}, tensor product is associative, using the universal property to compute specific tensor products.

Warm-Up Questions

1. Let R be a ring, let A be a right R-module and B a left R-module. Prove that the universal property of the tensor product defines the abelian group $A \otimes_{R} B$ uniquely up to unique isomorphism.
2. Let R be a ring with right $R-$ module M and left $R-$ module N. What is the additive identity in the tensor product $M \otimes_{R} N$? Explain why the elements $m \otimes 0$ and $0 \otimes n$ are zero for any $m \in M$ or $n \in N$.
3. (a) Explain why, when R is commutative, a left R-module M will also be a right R-module under the action $m r=r m$, and conversely any right $R-\operatorname{module} N$ has an induced left $R-$ module structure.
(b) Verify that these actions give M the structure of an (R, R)-bimodule (simply called an R-bimodule).
(c) Why will these constructions generally not work when R is non-commutative?
4. Let R be a ring with right $R-$ module M and left $R-$ module N. Show that the natural map

$$
M \times N \longrightarrow M \otimes_{R} N
$$

is not a group homomorphism in general. What are the constraints on this map, as imposed by the defining relations of $M \otimes_{R} N$?
5. Let R and S be rings (possibly the same ring). Let M be a right R-module and N a left R-module. When will the tensor product $M \otimes_{R} N$ have the structure of an abelian group, and under what conditions will it additionally have the structure of an S-module?
6. Let R be a commutative ring. Let e_{1}, e_{2}, e_{3} be a basis for the R^{3} and let $f_{1}, f_{2}, f_{3}, f_{4}$ be a basis for R^{4}. Expand the tensor

$$
\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) \otimes\left(b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}+b_{4} f_{4}\right) \quad \in R^{3} \otimes_{R} R^{4}
$$

7. Let R be a ring with right $R-$ module M and left R-module N. Which of the following maps are $R-$ balanced? Which are homomorphisms of abelian groups? For the maps that are R-balanced, describe how they factor through the tensor product.
(a) The identity map $M \times N \longrightarrow M \times N$.
(b) The natural projections of $M \times N$ onto M and N.
(c) The natural map $M \times N \longrightarrow M \otimes_{R} N$.
(d) Suppose M and N are ideals of R. The multiplication map

$$
\begin{aligned}
M \times N & \longrightarrow R \\
(m, n) & \longmapsto m n
\end{aligned}
$$

(e) Suppose R is commutative. The matrix multiplication map

$$
\begin{aligned}
M_{n \times k}(R) \times M_{k \times m}(R) & \longrightarrow M_{n \times m}(R) \\
(A, B) & \longmapsto A B
\end{aligned}
$$

(f) Suppose R is commutative and M, N, P are R-modules. The composition map:

$$
\begin{aligned}
\operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(N, P) & \longrightarrow \operatorname{Hom}_{R}(M, P) \\
(f, g) & \longmapsto g \circ f
\end{aligned}
$$

(g) Suppose R is commutative. The dot product map:

$$
\begin{aligned}
R^{n} \times R^{n} & \longrightarrow R \\
\quad(v, w) & \longmapsto v \cdot w
\end{aligned}
$$

(h) Suppose R is commutative. The cross product map:

$$
\begin{aligned}
R^{3} \times R^{3} & \longrightarrow R^{3} \\
\quad(v, w) & \longmapsto v \times w
\end{aligned}
$$

(i) Suppose R is commutative. The determinant map:

$$
\begin{aligned}
& R^{2} \times R^{2} \longrightarrow R \\
& \quad(v, w) \longmapsto \operatorname{det}\left[\begin{array}{cc}
\mid & \mid \\
v & w \\
\mid & \mid
\end{array}\right]
\end{aligned}
$$

8. Fill in the details of the computations from class:

$$
\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z} \quad \text { and } \quad R / I \otimes_{R} N \cong N / I N
$$

by verifying that the maps we constructed are R-balanced, R-bilinear, group homomorphisms, or mutual inverses, as appropriate.
9. Use the universal property of the tensor product to verify that $3 \otimes 6 \in \mathbb{Z} / 12 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 20 \mathbb{Z}$ is nonzero.
10. (a) Suppose that A is a finite abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$.
(b) Suppose that B is a finitely-generated abelian group. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} B$ is a \mathbb{Q}-vector space. What determines its dimension?
11. Let R be a ring with right $R-$ module M and left $R-$ module N.
(a) Show that there are always maps of abelian groups $N \rightarrow M \otimes_{R} N$.
(b) Give an example where this map is injective, and an example where this map is not injective.
12. Let $V \cong \mathbb{C}^{2}$ be a complex vector space, and let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix with respect to the standard basis e_{1}, e_{2}. Write down the matrix for the linear map induced by A on the four-dimensional vector space $V \otimes V$ with respect to the basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$.
13. Let V be a complex vector space. Let $T: V \rightarrow V$ be a diagonalizable linear map with eigenbasis $v_{1}, v_{2}, \ldots v_{n}$, and associated eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. What are the eigenvalues of the map induced by T on $V \otimes V$, and what are the associated eigenvectors?
14. Let R be a ring and S a subring.
(a) Give an example of R, S and an S-module that embeds into an R-module.
(b) Give an example of R, S, and an S-module that cannot embed into any R-module.

Assignment Questions

1. In the following question, to 'compute' a finitely generated abelian group means to classify the group in terms of the structure theorem for finitely generated abelian groups, that is, to realize the group as a product of cyclic groups. To 'compute' a vector space means to determine its dimension.
(a) For integers $m, n>1$, compute the abelian groups $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$. Compare this to the group $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$.
(b) For any integer $n>1$, compute the abelian $\operatorname{group} \mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$. Compute the group $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Q} / \mathbb{Z})$ and compare the two solutions.
(c) Compute the rational vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$.
(d) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as vector spaces over \mathbb{R}.
(e) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as vector spaces over \mathbb{Q}.
2. Let R be a commutative ring with ideals I and J. Prove the isomorphism of R-modules:

$$
\begin{aligned}
R / I \otimes_{R} R / J & \longrightarrow R /(I+J) \\
(r+I) \otimes(s+J) & \longmapsto r s+(I+J)
\end{aligned}
$$

3. (a) Let D be a right R-module. Prove that this map is a (well-defined) additive covariant functor:

$$
\begin{aligned}
D \otimes_{R}-: R-\underline{\mathrm{Mod}} & \longrightarrow \underline{\mathrm{Ab}} \\
M & \longmapsto D \otimes_{R} M \\
{[\phi: M \rightarrow N] } & \longmapsto\left[\begin{array}{c}
\phi_{*}: D \otimes_{R} M \longrightarrow D \otimes_{R} N \\
\phi_{*}(d \otimes m)=d \otimes \phi(m)
\end{array}\right]
\end{aligned}
$$

By definition, the functor is additive if the maps $\operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(D \otimes_{R} M, D \otimes_{R} N\right)$ are maps of abelian groups for all objects $M, N \in R$-Mod.
(b) (The tensor-Hom adjunction.) Let S, R by rings. Let A be an (S, R)-bimodule, B a left R-module, and C a left S-module. Prove that there is a (well-defined) isomorphism of abelian groups

$$
\begin{array}{r}
\operatorname{Hom}_{S}\left(A \otimes_{R} B, C\right) \stackrel{\cong}{\cong} \operatorname{Hom}_{R}\left(B, \operatorname{Hom}_{S}(A, C)\right) \\
{[f: a \otimes b \longmapsto f(a \otimes b)] \longmapsto[b \longmapsto[a \longmapsto f(a \otimes b)]]}
\end{array}
$$

It turns out that this bijection is natural, so the functors $A \otimes_{R}-$ and $\operatorname{Hom}_{S}(A,-)$ are adjoints.
4. Bonus (Optional). (The functor $D \otimes_{R}$ - is right exact.) Let F be an additive covariant functor from $R-\underline{\text { Mod }}$ to S-Mod. Then F is called exact if for any short exact sequence of R-modules

$$
0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\varphi} C \longrightarrow 0
$$

the image

$$
0 \longrightarrow F(A) \xrightarrow{F(\psi)} F(B) \xrightarrow{F(\varphi)} F(C) \longrightarrow 0
$$

is exact. A weaker condition: the functor F is called right exact if the resulting sequence is always exact on the right, that is, the sequence

$$
F(A) \xrightarrow{F(\psi)} F(B) \xrightarrow{F(\varphi)} F(C) \longrightarrow 0
$$

is exact. Let R be any ring, and D a right $R-$ module.
(a) Show by example that the functor $D \otimes_{R}-: R-\operatorname{Mod} \rightarrow \mathbb{Z}$-Mod may not be exact.
(b) Show that $D \otimes_{R}-$ is right exact. (This result turns out to be a useful computational tool).

Hint: Dummit-Foote 10.5 Theorem 39. An alternate proof on p402 uses the tensor-Hom adjunction.
(c) Show that, if k is a field and V a k-vector space, the functor $V \otimes_{k}-$ is exact.

