Reading: Dummit–Foote Ch 10.4, 11.5, 18.1.

Summary of definitions and main results

Definitions we've covered: R-algebra, k^{th} tensor power $T^k(M)$, tensor algebra $T^*(M)$, k^{th} symmetric power $\operatorname{Sym}^k(M)$, symmetric algebra $\operatorname{Sym}^*(M)$, k^{th} exterior power $\bigwedge^k M$, exterior algebra $\bigwedge^* M$, group ring, (linear) representation, degree of a representation, faithful representation, trivial representation, permutation representation, regular representation, homomorphism and isomorphism of representations, G-equivariant map, intertwiner, minimal polynomial of a linear map.

Main results: using right exactness to compute tensor products, construction & universal properties for tensor, symmetric, and exterior powers and algebras, equivalent definitions of a group representation.

Warm-Up Questions

- 1. (a) We defined how to form the tensor product $M \otimes_R N$ of a right *R*-module *M* and a left *R*-module *N*. What would go wrong with this construction if *M* instead had the structure of a left *R*-module?
 - (b) Show that if M is an (S, R)-bimodule and N a left R-module, the tensor product $M \otimes_R N$ has the structure of an S-module. Why must the left action of S and the right action of R on M commute?
- 2. Verify that the tensor product of maps respects composition:

$$(\tilde{\phi} \otimes \tilde{\psi}) \circ (\phi \otimes \psi) = (\tilde{\phi} \circ \phi) \otimes (\tilde{\psi} \circ \psi).$$

- 3. Let $\phi: M \to M'$ be a map of right *R*-modules, and $\psi: N \to N'$ be a map of left *R*-modules.
 - (a) Show by example that even if ϕ and ψ both inject, their tensor product $\phi \otimes \psi$ may not be injective.
 - (b) Show that if ϕ and ψ are both surjective, then their tensor product $\phi \otimes \psi$ will be surjective.
 - (c) Show that if ϕ and ψ are both isomorphisms, then their tensor product $\phi \otimes \psi$ will be an isomorphism *Hint:* Isomorphisms have inverses. Use Warm-Up Problem 2.
- 4. Fill in the details of the proof of that the tensor product associates (Dummit-Foote 10.4 Theorem 14).
- 5. Let M be a right R-module and N_1, \ldots, N_n a set of left R-modules. Verify that the tensor product distributes over direct sums (Dummit-Foote 10.4 Theorem 17). There is a unique group isomorphism

 $M \otimes_R (N_1 \oplus \cdots \oplus N_n) \cong (M \otimes_R N_1) \oplus \cdots \oplus (M \otimes_R N_n).$

Conclude that if N is a left $R\text{-module},\,R^n\otimes_R N\cong N^n$.

- 6. Show that the following alternate definition of an R-algebra A is equivalent to the one from class. Given a commutative ring R, an R-algebra A is an R-module A with a ring structure such that the multiplication map $A \times A \to A$ is R-bilinear.
- 7. Let R be a commutative ring, and M and R-module.
 - (a) Verify that, if R does not have characteristic 2, then the submodule

 $\langle m_1 \otimes m_2 \otimes \cdots \otimes m_k \mid m_i = m_j \text{ for some } i \neq j \rangle \subseteq T^k M$

defining the exterior power $\bigwedge^k M$ is equal to the submodule

$$\langle m_1 \otimes m_2 \otimes \cdots \otimes m_k - \operatorname{sign}(\sigma) m_{\sigma(1)} \otimes m_{\sigma(2)} \otimes \cdots \otimes m_{\sigma(k)} \mid \sigma \in S_k \rangle.$$

(b) Are these submodules the same when R has characteristic 2?

8. Let R be a commutative ring and M and R-module. Verify the universal properties for the R-modules

(a)
$$T^k(M)$$
 (b) $Sym^k(M)$ (c) $\bigwedge^{\kappa}(M)$

and for R-algebras

(d)
$$T^*(M)$$
 (e) $Sym^*(M)$

- 9. Let G be a group and V an \mathbb{F} -vector space. Show that the following are all equivalent ways to define a (linear) representation of G on V.
 - i. A group homomorphism $G \to \operatorname{GL}(V)$.
 - ii. A group action (by linear maps) of G on V.
 - iii. An $\mathbb{F}[G]$ -module structure on V.
- 10. Let R be a commutative ring. Show that the group ring $R[\mathbb{Z}] \cong R[t, t^{-1}]$. Show that $R[\mathbb{Z}/n\mathbb{Z}] \cong R[t]/\langle t^n 1 \rangle$. What is the group ring $R[\mathbb{Z}^n]$? The group ring $R[\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}]$?
- 11. Let $\phi: G \to GL(V)$ be any group representation. What is the image of the identity element in GL(V)?
- 12. Compute the sum and product of $(1 + 3e_{(12)} + 4e_{(123)})$ and $(4 + 2e_{(12)} + 4e_{(13)})$ in the group ring $\mathbb{Q}[S_3]$.
- 13. Let G be a group and R a commutative ring. Show that R[G] is commutative if and only if G is abelian.
- 14. Given any representation $\phi: G \to GL(V)$, prove that ϕ defines a faithful representation of $G/\ker(\phi)$.
- 15. (a) Find an explicit isomorphism T between the following two representations of S_2 .

$$S_2 \to GL(\mathbb{R}^2) \qquad \qquad S_2 \to GL(\mathbb{R}^2)$$
$$(1\ 2) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (1\ 2) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Give a geometric description of the action and the bases for \mathbb{R}^2 associated to each matrix group. (b) Prove that the following two representations of S_2 are not isomorphic.

$$S_2 \to GL(\mathbb{R}^2) \qquad \qquad S_2 \to GL(\mathbb{R}^2)$$

$$(1\ 2) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (1\ 2) \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

16. Fix an integer n > 0. Recall the following example from class: The symmetric group S_n acts on \mathbb{C}^n by permuting a basis e_1, e_2, \ldots, e_n . We saw that this representation has two subrepresentations,

$$D = \operatorname{span}_{\mathbb{C}}(e_1 + e_2 + \dots + e_n) \quad \text{and} \quad U = \{a_1e_1 + a_2e_2 + \dots + a_ne_n \mid a_1 + a_2 + \dots + a_n = 0\}.$$

Show that, as a $\mathbb{C}S_n$ -module, \mathbb{C}^n is the direct sum $\mathbb{C}^n \cong D \oplus U$.

- 17. Let A, B, C be linear maps $V \to V$, with C invertible. Verify the following properties of the trace.
 - (a) $\operatorname{Trace}(CAC^{-1}) = \operatorname{Trace}(A)$ (so trace does not depend on choice of basis or matrix representing A).
 - (b) $\operatorname{Trace}(cA + B) = c\operatorname{Trace}(A) + \operatorname{Trace}(B)$ for any scalar c.
 - (c) $\operatorname{Trace}(AB) = \operatorname{Trace}(BA)$ but $\operatorname{Trace}(AB) \neq \operatorname{Trace}(A)\operatorname{Trace}(B)$ in general.
 - (d) $\operatorname{Trace}(A) = \operatorname{Trace}(A^T).$
 - (e) $\operatorname{Trace}(\operatorname{Id}_V) = \dim(V).$
 - (f) $\operatorname{Trace}(A)$ is the sum of the eigenvalues of A (with algebraic multiplicity).
 - (g) If A has characteristic polynomial $p_A(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$, then $\operatorname{Trace}(A) = a_{n-1}$.
 - (h) If $V = U \oplus W$ and U, W are stabilized by A, then $\operatorname{Trace}(A) = \operatorname{Trace}(A|_U) + \operatorname{Trace}(A|_W)$.

Assignment Questions

1. (a) Use the right-exactness of the functor $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} -$ and the short exact sequence of \mathbb{Z} -modules

$$0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

to (re)compute the abelian group $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.

(b) Let k be a field and let R = k[x, y]. Using any method you prefer, give simple descriptions of the following *R*-modules, and determine their dimensions over k.

$$\frac{R}{(x)} \otimes_R \frac{R}{(x-y)} \qquad \frac{R}{(x)} \otimes_R \frac{R}{(x-1)} \qquad \frac{R}{(y-1)} \otimes_R \frac{R}{(x-y)}$$

- 2. Let R be a commutative ring and M and R-module.
 - (a) For any commutative ring R and R-module M, show that the R-module $T^*M := \bigoplus_{i=0}^{\infty} M^{\otimes i}$ has the structure of an R-algebra. Verify that this algebra may not be commutative.
 - (b) A similar proof shows that $\operatorname{Sym}^* M := \bigoplus_{i=0}^{\infty} \operatorname{Sym}^i(M)$ and $\bigwedge^* M := \bigoplus_{i=0}^{\infty} \bigwedge^i M$ are *R*-algebras. You do not need to give a full proof, but verify that multiplication is well-defined for these spaces (it is independent of representative of an equivalence class of elements in these quotients).
- 3. Let \mathbb{F} be a field of characteristic zero and V a vector space over \mathbb{F} with basis $\{x_1, \ldots, x_n\}$.
 - (a) Verify that $\operatorname{Sym}^k(V)$ is a vector space over \mathbb{F} with basis given by the set of monomials in the variables $\{x_1, x_2, \ldots, x_n\}$ of total degree k. (*Remark:* There are $\binom{n+k-1}{n-1}$ such monomials). *Hint:* To show these elements are linearly independent, it is enough to use the universal property to define a symmetric multilinear map $V^k \to \mathbb{F}$ that factors through $\operatorname{Sym}^k V$ which takes value 1 on one basis element and 0 on all others.
 - (b) Verify that $\bigwedge^k V$ is isomorphic to the \mathbb{F} -vector space with a basis given by elements of the form $x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_k}$ with $i_1 < i_2 < \cdots < i_k$. (*Remark:* There are $\binom{n}{k}$ such elements).
 - (c) Suppose that $A: V \to V$ is a diagonalizable linear map with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ (listed with multiplicity). Compute the eigenvalues of the maps induced by A on T^kV , $\operatorname{Sym}^k(V)$, and $\wedge^k V$.
 - (d) Show that you can identify $\operatorname{Sym}^* V$, and $\bigwedge^* V$ as direct summands of T^*V via the (split) maps

$$x_1 x_2 \cdots x_k \longmapsto \frac{1}{k!} \sum_{\sigma \in S_k} \sigma(x_1 \otimes x_2 \otimes \cdots \otimes x_k) \quad \text{and} \quad x_1 \wedge x_2 \wedge \cdots \wedge x_k \longmapsto \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) \sigma(x_1 \otimes x_2 \otimes \cdots \otimes x_k)$$

(We are using the assumption that \mathbb{F} has characteristic zero, so the integer k! is invertible in \mathbb{F} .)

- (e) Show that $V \otimes_{\mathbb{F}} V \cong \operatorname{Sym}^2(V) \oplus \wedge^2 V$.
- (f) Show that if V has dimension at least 2, then $V \otimes_{\mathbb{F}} V \otimes_{\mathbb{F}} V \supseteq \operatorname{Sym}^{3}(V) \oplus \wedge^{3}V$.
- 4. Let G be a finite group, and \mathbb{F} a field. You may use properties of the trace without proof.
 - (a) Let $G \to GL(U)$ be any representation of G. Citing facts from linear algebra (which you don't need to prove), explain why the trace of the matrix representing a given element $g \in G$ is well-defined in the sense that it will be the same in any isomorphic representation of G.
 - (b) A permutation representation of G on a finite-dimensional \mathbb{F} -vector space V is a linear representation $\rho: G \to GL(V)$ in which elements act by permuting some basis $B = \{b_1, \ldots, b_m\}$ for V. Show that, with respect to the basis $\{b_1, \ldots, b_m\}$, for each element $g \in G$, $\rho(g)$ is represented by an $m \times m$ permutation matrix, a square matrix that has exactly one entry 1 in each row and each column, and zero elsewhere. Use this description of matrices $\rho(g)$ to show that the trace of $\rho(g)$ is equal to the number of basis elements b_i fixed by $\rho(g)$.

(c) Our first example of a permutation representation was given by the action of S_n on \mathbb{F}^n by permuting the basis e_1, \ldots, e_n . Show, in contrast, that the subrepresentation

 $U = \{a_1e_1 + a_2e_2 + \dots + a_ne_n \mid a_1 + a_2 + \dots + a_n = 0\} \subseteq \mathbb{F}^n$

is not a permutation representation with respect to any basis for U. Hint: Warm-up Question 17(h). What is the trace of an n-cycle?

- (d) The group ring of $\mathbb{F}[G]$ is a left module over itself. This corresponds to permutation representation of the group G on the underlying vector space $\mathbb{F}[G]$, called the *(left) regular representation* of G. Find the degree of this representation. In what basis is this a permutation representation, and how many G-orbits does this basis have?
- (e) For any $g \in G$, compute the trace of the matrix representing g in the regular representation.
- 5. Let V be a $\mathbb{C}[x]$ -module that is finite dimensional over \mathbb{C} , where x acts on V by a \mathbb{C} -linear map T. According to the structure theorem for finitely generated modules over a PID, we can write

$$V \cong \frac{\mathbb{C}[x]}{(p_1(x))} \oplus \frac{\mathbb{C}[x]}{(p_2(x))} \oplus \dots \oplus \frac{\mathbb{C}[x]}{(p_k(x))}$$

for some monic polynomials $p_i(x) \in \mathbb{C}[x]$ such that $p_1(x)$ divides $p_2(x)$, $p_2(x)$ divides $p_3(x)$, etc. The monic polynomial $p_k(x)$ is called the *minimal polynomial* of T, and the product $p_1(x)p_2(x)\cdots p_k(x)$ is called the *characteristic polynomial* of T. By construction the minimal and characteristic polynomials have the same set of roots (possibly with different multiplicities).

- (a) Verify that if $\lambda \in \mathbb{C}$ is a root of $p_i(x)$, then $\frac{p_i(x)}{(x-\lambda)} \in \frac{\mathbb{C}[x]}{(p_i(x))}$ is an eigenvector of T with eigenvalue λ .
- (b) Suppose that $\mu \in \mathbb{C}$ is not a root of $p_k(x)$ (and therefore not a root of $p_i(x)$ for any *i*). Show that μ is not an eigenvalue of *T*. Conclude that the eigenvalues of *T* are precisely the roots of the minimal polynomial $p_k(x)$.

Hint: Recall that an eigenvector for μ is a nonzero element of ker $(T - \mu I)$, where I is the identity matrix. Consider the projection of a μ -eigenspace onto the summand $\frac{\mathbb{C}[x]}{(p_i(x))}$ for each i, and notice

that the polynomial $(x - \mu)$ is coprime to $p_i(x)$.

- (c) Suppose the roots of $p_k(x)$ are distinct, i.e, they each occur with multiplicity one. Show that T is diagonalizable. *Hint:* Chinese Remainder Theorem.
- (d) Show that $\operatorname{Ann}(V) = (p_k(x)).$
- (e) Show that Ann(V) is equal to the set

 $\{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{C}[x] \mid a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0 I \text{ is the zero map} \}$

Conclude that if p(T) = 0 for some polynomial p(x), every eigenvalue of T is a root of p(x).

- (f) Suppose the linear map T has finite order, that is, $T^n = I$ for some $n \in \mathbb{Z}_{\geq 0}$. Show that T is diagonalizable, and that all its eigenvalues are n^{th} roots of unity.
- (g) Let G be a finite group of order n, and let $\rho : G \to GL(V)$ be a representations of G on a finite dimensional vector space V. Conclude that for every $g \in G$ the linear map $\rho(g)$ is diagonalizable, and its eigenvalues are all n^{th} roots of unity.
- 6. Bonus (Optional). Let \mathbb{C}^d be the canonical permutation representation of the symmetric group S_d , and consider the induced action on $\bigwedge^k \mathbb{C}^d$. Prove that

$$\frac{1}{d!} \sum_{\sigma \in S_d} \left(\operatorname{Trace} \left(\sigma \curvearrowright \wedge^k \mathbb{C}^d \right) \right)^2 = 2 \quad \text{for any } d \ge 1 \text{ and } 0 \le k \le d-1.$$

We will see that with *character theory*, this result implies that $\bigwedge^k U$ is an *irreducible* S_d -representation for all $0 \le k \le d-1$.