Reading: Dummit-Foote Ch 10.4, 11.5, 18.1.

Summary of definitions and main results

Definitions we've covered: R-algebra, $k^{t h}$ tensor power $T^{k}(M)$, tensor algebra $T^{*}(M), k^{t h}$ symmetric power $\operatorname{Sym}^{k}(M)$, symmetric algebra $\operatorname{Sym}^{*}(M), k^{t h}$ exterior power $\bigwedge^{k} M$, exterior algebra $\bigwedge^{*} M$, group ring, (linear) representation, degree of a representation, faithful representation, trivial representation, permutation representation, regular representation, homomorphism and isomorphism of representations, G-equivariant map, intertwiner, minimal polynomial of a linear map.

Main results: using right exactness to compute tensor products, construction \& universal properties for tensor, symmetric, and exterior powers and algebras, equivalent definitions of a group representation.

Warm-Up Questions

1. (a) We defined how to form the tensor product $M \otimes_{R} N$ of a right R-module M and a left R-module N. What would go wrong with this construction if M instead had the structure of a left R-module?
(b) Show that if M is an (S, R)-bimodule and N a left R-module, the tensor product $M \otimes_{R} N$ has the structure of an S-module. Why must the left action of S and the right action of R on M commute?
2. Verify that the tensor product of maps respects composition:

$$
(\tilde{\phi} \otimes \tilde{\psi}) \circ(\phi \otimes \psi)=(\tilde{\phi} \circ \phi) \otimes(\tilde{\psi} \circ \psi)
$$

3. Let $\phi: M \rightarrow M^{\prime}$ be a map of right $R-$ modules, and $\psi: N \rightarrow N^{\prime}$ be a map of left R-modules.
(a) Show by example that even if ϕ and ψ both inject, their tensor product $\phi \otimes \psi$ may not be injective.
(b) Show that if ϕ and ψ are both surjective, then their tensor product $\phi \otimes \psi$ will be surjective.
(c) Show that if ϕ and ψ are both isomorphisms, then their tensor product $\phi \otimes \psi$ will be an isomorphism Hint: Isomorphisms have inverses. Use Warm-Up Problem 2.
4. Fill in the details of the proof of that the tensor product associates (Dummit-Foote 10.4 Theorem 14).
5. Let M be a right R-module and N_{1}, \ldots, N_{n} a set of left R-modules. Verify that the tensor product distributes over direct sums (Dummit-Foote 10.4 Theorem 17). There is a unique group isomorphism

$$
M \otimes_{R}\left(N_{1} \oplus \cdots \oplus N_{n}\right) \cong\left(M \otimes_{R} N_{1}\right) \oplus \cdots \oplus\left(M \otimes_{R} N_{n}\right)
$$

Conclude that if N is a left $R-$ module, $R^{n} \otimes_{R} N \cong N^{n}$.
6. Show that the following alternate definition of an R-algebra A is equivalent to the one from class. Given a commutative ring R, an R-algebra A is an R-module A with a ring structure such that the multiplication map $A \times A \rightarrow A$ is R-bilinear.
7. Let R be a commutative ring, and M and $R-$ module.
(a) Verify that, if R does not have characteristic 2 , then the submodule

$$
\left.\left\langle m_{1} \otimes m_{2} \otimes \cdots \otimes m_{k}\right| m_{i}=m_{j} \text { for some } i \neq j\right\rangle \subseteq T^{k} M
$$

defining the exterior power $\bigwedge^{k} M$ is equal to the submodule

$$
\left\langle m_{1} \otimes m_{2} \otimes \cdots \otimes m_{k}-\operatorname{sign}(\sigma) m_{\sigma(1)} \otimes m_{\sigma(2)} \otimes \cdots \otimes m_{\sigma(k)} \mid \sigma \in S_{k}\right\rangle
$$

(b) Are these submodules the same when R has characteristic 2?
8. Let R be a commutative ring and M and R-module. Verify the universal properties for the R-modules
(a) $\mathrm{T}^{k}(M)$
(b) $\operatorname{Sym}^{k}(M)$
(c) $\bigwedge^{k}(M)$
and for R-algebras
(d) $\mathrm{T}^{*}(M)$
(e) $\operatorname{Sym}^{*}(M)$
9. Let G be a group and V an \mathbb{F}-vector space. Show that the following are all equivalent ways to define a (linear) representation of G on V.
i. A group homomorphism $G \rightarrow \mathrm{GL}(V)$.
ii. A group action (by linear maps) of G on V.
iii. An $\mathbb{F}[G]$-module structure on V.
10. Let R be a commutative ring. Show that the group ring $R[\mathbb{Z}] \cong R\left[t, t^{-1}\right]$. Show that $R[\mathbb{Z} / n \mathbb{Z}] \cong$ $R[t] /\left\langle t^{n}-1\right\rangle$.What is the group ring $R\left[\mathbb{Z}^{n}\right]$? The group ring $R[\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}]$?
11. Let $\phi: G \rightarrow G L(V)$ be any group representation. What is the image of the identity element in $G L(V)$?
12. Compute the sum and product of $\left(1+3 e_{(12)}+4 e_{(123)}\right)$ and $\left(4+2 e_{(12)}+4 e_{(13)}\right)$ in the group ring $\mathbb{Q}\left[S_{3}\right]$.
13. Let G be a group and R a commutative ring. Show that $R[G]$ is commutative if and only if G is abelian.
14. Given any representation $\phi: G \rightarrow G L(V)$, prove that ϕ defines a faithful representation of $G / \operatorname{ker}(\phi)$.
15. (a) Find an explicit isomorphism T between the following two representations of S_{2}.

$$
\begin{aligned}
S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) & S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) \\
(1 & 2) & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & (12)
\end{aligned}>\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Give a geometric description of the action and the bases for \mathbb{R}^{2} associated to each matrix group.
(b) Prove that the following two representations of S_{2} are not isomorphic.

$$
\begin{aligned}
S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) & S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) \\
(1 & 2) & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & (12)
\end{aligned}>\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

16. Fix an integer $n>0$. Recall the following example from class: The symmetric group S_{n} acts on \mathbb{C}^{n} by permuting a basis $e_{1}, e_{2}, \ldots, e_{n}$. We saw that this representation has two subrepresentations,

$$
D=\operatorname{span}_{\mathbb{C}}\left(e_{1}+e_{2}+\cdots e_{n}\right) \quad \text { and } \quad U=\left\{a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n} \mid a_{1}+a_{2}+\cdots a_{n}=0\right\}
$$

Show that, as a $\mathbb{C} S_{n}$-module, \mathbb{C}^{n} is the direct sum $\mathbb{C}^{n} \cong D \oplus U$.
17. Let A, B, C be linear maps $V \rightarrow V$, with C invertible. Verify the following properties of the trace.
(a) $\operatorname{Trace}\left(C A C^{-1}\right)=\operatorname{Trace}(A)$ (so trace does not depend on choice of basis or matrix representing A).
(b) $\operatorname{Trace}(c A+B)=c \operatorname{Trace}(A)+\operatorname{Trace}(B)$ for any scalar c.
(c) $\operatorname{Trace}(A B)=\operatorname{Trace}(B A)$ but $\operatorname{Trace}(A B) \neq \operatorname{Trace}(A) \operatorname{Trace}(B)$ in general.
(d) $\operatorname{Trace}(A)=\operatorname{Trace}\left(A^{T}\right)$.
(e) $\operatorname{Trace}\left(\operatorname{Id}_{V}\right)=\operatorname{dim}(V)$.
(f) $\operatorname{Trace}(A)$ is the sum of the eigenvalues of A (with algebraic multiplicity).
(g) If A has characteristic polynomial $p_{A}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then Trace $(A)=a_{n-1}$.
(h) If $V=U \oplus W$ and U, W are stabilized by A, then $\operatorname{Trace}(A)=\operatorname{Trace}\left(\left.A\right|_{U}\right)+\operatorname{Trace}\left(\left.A\right|_{W}\right)$.

Assignment Questions

1. (a) Use the right-exactness of the functor $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}}$ - and the short exact sequence of \mathbb{Z}-modules

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z} \longrightarrow 0
$$

to (re)compute the abelian group $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$.
(b) Let k be a field and let $R=k[x, y]$. Using any method you prefer, give simple descriptions of the following R-modules, and determine their dimensions over k.

$$
\frac{R}{(x)} \otimes_{R} \frac{R}{(x-y)} \quad \frac{R}{(x)} \otimes_{R} \frac{R}{(x-1)} \quad \frac{R}{(y-1)} \otimes_{R} \frac{R}{(x-y)}
$$

2. Let R be a commutative ring and M and $R-$ module.
(a) For any commutative ring R and R-module M, show that the R-module $T^{*} M:=\bigoplus_{i=0}^{\infty} M^{\otimes i}$ has the structure of an R-algebra. Verify that this algebra may not be commutative.
(b) A similar proof shows that $\operatorname{Sym}^{*} M:=\bigoplus_{i=0}^{\infty} \operatorname{Sym}^{i}(M)$ and $\bigwedge^{*} M:=\bigoplus_{i=0}^{\infty} \Lambda^{i} M$ are R-algebras. You do not need to give a full proof, but verify that multiplication is well-defined for these spaces (it is independent of representative of an equivalence class of elements in these quotients).
3. Let \mathbb{F} be a field of characteristic zero and V a vector space over \mathbb{F} with basis $\left\{x_{1}, \ldots, x_{n}\right\}$.
(a) Verify that $\operatorname{Sym}^{k}(V)$ is a vector space over \mathbb{F} with basis given by the set of monomials in the variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of total degree k. (Remark: There are $\binom{n+k-1}{n-1}$ such monomials).
Hint: To show these elements are linearly independent, it is enough to use the universal property to define a symmetric multilinear map $V^{k} \rightarrow \mathbb{F}$ that factors through $\operatorname{Sym}^{k} V$ which takes value 1 on one basis element and 0 on all others.
(b) Verify that $\bigwedge^{k} V$ is isomorphic to the \mathbb{F}-vector space with a basis given by elements of the form $x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}$ with $i_{1}<i_{2}<\cdots<i_{k}$. (Remark: There are $\binom{n}{k}$ such elements).
(c) Suppose that $A: V \rightarrow V$ is a diagonalizable linear map with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (listed with multiplicity). Compute the eigenvalues of the maps induced by A on $T^{k} V, \operatorname{Sym}^{k}(V)$, and $\wedge^{k} V$.
(d) Show that you can identify $\operatorname{Sym}^{*} V$, and $\bigwedge^{*} V$ as direct summands of $T^{*} V$ via the (split) maps $x_{1} x_{2} \cdots x_{k} \longmapsto \frac{1}{k!} \sum_{\sigma \in S_{k}} \sigma\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k}\right) \quad$ and $\quad x_{1} \wedge x_{2} \wedge \cdots \wedge x_{k} \longmapsto \frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sign}(\sigma) \sigma\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k}\right)$
(We are using the assumption that \mathbb{F} has characteristic zero, so the integer k ! is invertible in \mathbb{F}.)
(e) Show that $V \otimes_{\mathbb{F}} V \cong \operatorname{Sym}^{2}(V) \oplus \wedge^{2} V$.
(f) Show that if V has dimension at least 2 , then $V \otimes_{\mathbb{F}} V \otimes_{\mathbb{F}} V \supsetneqq \operatorname{Sym}^{3}(V) \oplus \wedge^{3} V$.
4. Let G be a finite group, and \mathbb{F} a field. You may use properties of the trace without proof.
(a) Let $G \rightarrow G L(U)$ be any representation of G. Citing facts from linear algebra (which you don't need to prove), explain why the trace of the matrix representing a given element $g \in G$ is well-defined in the sense that it will be the same in any isomorphic representation of G.
(b) A permutation representation of G on a finite-dimensional \mathbb{F}-vector space V is a linear representation $\rho: G \rightarrow G L(V)$ in which elements act by permuting some basis $B=\left\{b_{1}, \ldots b_{m}\right\}$ for V. Show that, with respect to the basis $\left\{b_{1}, \ldots, b_{m}\right\}$, for each element $g \in G, \rho(g)$ is represented by an $m \times m$ permutation matrix, a square matrix that has exactly one entry 1 in each row and each column, and zero elsewhere. Use this description of matrices $\rho(g)$ to show that the trace of $\rho(g)$ is equal to the number of basis elements b_{i} fixed by $\rho(g)$.
(c) Our first example of a permutation representation was given by the action of S_{n} on \mathbb{F}^{n} by permuting the basis e_{1}, \ldots, e_{n}. Show, in contrast, that the subrepresentation

$$
U=\left\{a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n} \mid a_{1}+a_{2}+\cdots+a_{n}=0\right\} \subseteq \mathbb{F}^{n}
$$

is not a permutation representation with respect to any basis for U.
Hint: Warm-up Question $17(\mathrm{~h})$. What is the trace of an n-cycle?
(d) The group ring of $\mathbb{F}[G]$ is a left module over itself. This corresponds to permutation representation of the group G on the underlying vector space $\mathbb{F}[G]$, called the (left) regular representation of G. Find the degree of this representation. In what basis is this a permutation representation, and how many G-orbits does this basis have?
(e) For any $g \in G$, compute the trace of the matrix representing g in the regular representation.
5. Let V be a $\mathbb{C}[x]$-module that is finite dimensional over \mathbb{C}, where x acts on V by a \mathbb{C}-linear map T. According to the structure theorem for finitely generated modules over a PID, we can write

$$
V \cong \frac{\mathbb{C}[x]}{\left(p_{1}(x)\right)} \oplus \frac{\mathbb{C}[x]}{\left(p_{2}(x)\right)} \oplus \cdots \oplus \frac{\mathbb{C}[x]}{\left(p_{k}(x)\right)}
$$

for some monic polynomials $p_{i}(x) \in \mathbb{C}[x]$ such that $p_{1}(x)$ divides $p_{2}(x), p_{2}(x)$ divides $p_{3}(x)$, etc.
The monic polynomial $p_{k}(x)$ is called the minimal polynomial of T, and the product $p_{1}(x) p_{2}(x) \cdots p_{k}(x)$ is called the characteristic polynomial of T. By construction the minimal and characteristic polynomials have the same set of roots (possibly with different multiplicities).
(a) Verify that if $\lambda \in \mathbb{C}$ is a root of $p_{i}(x)$, then $\frac{p_{i}(x)}{(x-\lambda)} \in \frac{\mathbb{C}[x]}{\left(p_{i}(x)\right)}$ is an eigenvector of T with eigenvalue λ.
(b) Suppose that $\mu \in \mathbb{C}$ is not a root of $p_{k}(x)$ (and therefore not a root of $p_{i}(x)$ for any i. Show that μ is not an eigenvalue of T. Conclude that the eigenvalues of T are precisely the roots of the minimal polynomial $p_{k}(x)$.
Hint: Recall that an eigenvector for μ is a nonzero element of $\operatorname{ker}(T-\mu I)$, where I is the identity matrix. Consider the projection of a μ-eigenspace onto the summand $\frac{\mathbb{C}[x]}{\left(p_{i}(x)\right)}$ for each i, and notice that the polynomial $(x-\mu)$ is coprime to $p_{i}(x)$.
(c) Suppose the roots of $p_{k}(x)$ are distinct, ie, they each occur with multiplicity one. Show that T is diagonalizable. Hint: Chinese Remainder Theorem.
(d) Show that $\operatorname{Ann}(V)=\left(p_{k}(x)\right)$.
(e) Show that $\operatorname{Ann}(V)$ is equal to the set
$\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{C}[x] \mid a_{n} T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T+a_{0} I\right.$ is the zero map $\}$ Conclude that if $p(T)=0$ for some polynomial $p(x)$, every eigenvalue of T is a root of $p(x)$.
(f) Suppose the linear map T has finite order, that is, $T^{n}=I$ for some $n \in \mathbb{Z}_{\geq 0}$. Show that T is diagonalizable, and that all its eigenvalues are $n^{\text {th }}$ roots of unity.
(g) Let G be a finite group of order n, and let $\rho: G \rightarrow G L(V)$ be a representations of G on a finite dimensional vector space V. Conclude that for every $g \in G$ the linear map $\rho(g)$ is diagonalizable, and its eigenvalues are all $n^{\text {th }}$ roots of unity.
6. Bonus (Optional). Let \mathbb{C}^{d} be the canonical permutation representation of the symmetric group S_{d}, and consider the induced action on $\bigwedge^{k} \mathbb{C}^{d}$. Prove that

$$
\frac{1}{d!} \sum_{\sigma \in S_{d}}\left(\operatorname{Trace}\left(\sigma \curvearrowright \wedge^{k} \mathbb{C}^{d}\right)\right)^{2}=2 \quad \text { for any } d \geq 1 \text { and } 0 \leq k \leq d-1
$$

We will see that with character theory, this result implies that $\bigwedge^{k} U$ is an irreducible S_{d}-representation for all $0 \leq k \leq d-1$.

