
Math 122 Homework #6 12 May 2017

Reading: Dummit–Foote Ch 10.4, 11.5, 18.1.

Summary of definitions and main results

Definitions we’ve covered: R–algebra, kth tensor power T k(M), tensor algebra T ∗(M), kth symmetric

power Symk(M), symmetric algebra Sym∗(M), kth exterior power
∧k

M , exterior algebra
∧∗

M , group ring,
(linear) representation, degree of a representation, faithful representation, trivial representation, permutation
representation, regular representation, homomorphism and isomorphism of representations, G-equivariant
map, intertwiner, minimal polynomial of a linear map.

Main results: using right exactness to compute tensor products, construction & universal properties for
tensor, symmetric, and exterior powers and algebras, equivalent definitions of a group representation.

Warm-Up Questions

1. (a) We defined how to form the tensor product M ⊗R N of a right R–module M and a left R–module
N . What would go wrong with this construction if M instead had the structure of a left R–module?

(b) Show that if M is an (S,R)–bimodule and N a left R–module, the tensor product M ⊗RN has the
structure of an S–module. Why must the left action of S and the right action of R on M commute?

2. Verify that the tensor product of maps respects composition:

(φ̃⊗ ψ̃) ◦ (φ⊗ ψ) = (φ̃ ◦ φ)⊗ (ψ̃ ◦ ψ).

3. Let φ : M →M ′ be a map of right R–modules, and ψ : N → N ′ be a map of left R–modules.

(a) Show by example that even if φ and ψ both inject, their tensor product φ⊗ψ may not be injective.

(b) Show that if φ and ψ are both surjective, then their tensor product φ⊗ ψ will be surjective.

(c) Show that if φ and ψ are both isomorphisms, then their tensor product φ⊗ψ will be an isomorphism
Hint: Isomorphisms have inverses. Use Warm-Up Problem 2.

4. Fill in the details of the proof of that the tensor product associates (Dummit-Foote 10.4 Theorem 14).

5. Let M be a right R–module and N1, . . . , Nn a set of left R–modules. Verify that the tensor product
distributes over direct sums (Dummit–Foote 10.4 Theorem 17). There is a unique group isomorphism

M ⊗R (N1 ⊕ · · · ⊕Nn) ∼= (M ⊗R N1)⊕ · · · ⊕ (M ⊗R Nn).

Conclude that if N is a left R–module, Rn ⊗R N ∼= Nn .

6. Show that the following alternate definition of an R–algebra A is equivalent to the one from class.
Given a commutative ring R, an R–algebra A is an R–module A with a ring structure such that the
multiplication map A×A→ A is R–bilinear.

7. Let R be a commutative ring, and M and R–module.

(a) Verify that, if R does not have characteristic 2, then the submodule

〈m1 ⊗m2 ⊗ · · · ⊗mk | mi = mj for some i 6= j〉 ⊆ T kM

defining the exterior power
∧k

M is equal to the submodule

〈m1 ⊗m2 ⊗ · · · ⊗mk − sign(σ)mσ(1) ⊗mσ(2) ⊗ · · · ⊗mσ(k) | σ ∈ Sk〉.

(b) Are these submodules the same when R has characteristic 2?
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8. Let R be a commutative ring and M and R–module. Verify the universal properties for the R–modules

(a) Tk(M) (b) Symk(M) (c)

k∧
(M)

and for R–algebras
(d) T∗(M) (e) Sym∗(M)

9. Let G be a group and V an F-vector space. Show that the following are all equivalent ways to define a
(linear) representation of G on V .

i. A group homomorphism G→ GL(V ).

ii. A group action (by linear maps) of G on V .

iii. An F[G]–module structure on V .

10. Let R be a commutative ring. Show that the group ring R[Z] ∼= R[t, t−1]. Show that R[Z/nZ] ∼=
R[t]/〈tn − 1〉.What is the group ring R[Zn]? The group ring R[Z/3Z⊕ Z/3Z]?

11. Let φ : G→ GL(V ) be any group representation. What is the image of the identity element in GL(V )?

12. Compute the sum and product of (1 + 3e(1 2) + 4e(1 2 3)) and (4 + 2e(1 2) + 4e(1 3)) in the group ring Q[S3].

13. Let G be a group and R a commutative ring. Show that R[G] is commutative if and only if G is abelian.

14. Given any representation φ : G→ GL(V ), prove that φ defines a faithful representation of G/ ker(φ).

15. (a) Find an explicit isomorphism T between the following two representations of S2.

S2 → GL(R2) S2 → GL(R2)

(1 2) 7→
[
0 1
1 0

]
(1 2) 7→

[
1 0
0 −1

]
Give a geometric description of the action and the bases for R2 associated to each matrix group.

(b) Prove that the following two representations of S2 are not isomorphic.

S2 → GL(R2) S2 → GL(R2)

(1 2) 7→
[
0 1
1 0

]
(1 2) 7→

[
−1 0
0 −1

]
16. Fix an integer n > 0. Recall the following example from class: The symmetric group Sn acts on Cn by

permuting a basis e1, e2, . . . , en. We saw that this representation has two subrepresentations,

D = spanC(e1 + e2 + · · · en) and U = {a1e1 + a2e2 + · · ·+ anen | a1 + a2 + · · · an = 0}.

Show that, as a CSn–module, Cn is the direct sum Cn ∼= D ⊕ U .

17. Let A, B, C be linear maps V → V , with C invertible. Verify the following properties of the trace.

(a) Trace(CAC−1) = Trace(A) (so trace does not depend on choice of basis or matrix representing A).

(b) Trace(cA+B) = cTrace(A) + Trace(B) for any scalar c.

(c) Trace(AB) = Trace(BA) but Trace(AB) 6= Trace(A)Trace(B) in general.

(d) Trace(A) = Trace(AT ).

(e) Trace(IdV ) = dim(V ).

(f) Trace(A) is the sum of the eigenvalues of A (with algebraic multiplicity).

(g) If A has characteristic polynomial pA(x) = xn + an−1x
n−1 + · · ·+ a0, then Trace(A) = an−1.

(h) If V = U ⊕W and U,W are stabilized by A, then Trace(A) = Trace(A|U ) + Trace(A|W ).
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Assignment Questions

1. (a) Use the right-exactness of the functor Z/mZ⊗Z − and the short exact sequence of Z–modules

0 −→ Z n−→ Z −→ Z/nZ −→ 0

to (re)compute the abelian group Z/mZ⊗Z Z/nZ.
(b) Let k be a field and let R = k[x, y]. Using any method you prefer, give simple descriptions of the

following R–modules, and determine their dimensions over k.

R

(x)
⊗R

R

(x− y)

R

(x)
⊗R

R

(x− 1)

R

(y − 1)
⊗R

R

(x− y)

2. Let R be a commutative ring and M and R–module.

(a) For any commutative ring R and R–module M , show that the R–module T ∗M :=
⊕∞

i=0M
⊗i has

the structure of an R–algebra. Verify that this algebra may not be commutative.

(b) A similar proof shows that Sym∗M :=
⊕∞

i=0 Symi(M) and
∧∗

M :=
⊕∞

i=0

∧i
M are R–algebras.

You do not need to give a full proof, but verify that multiplication is well-defined for these spaces
(it is independent of representative of an equivalence class of elements in these quotients).

3. Let F be a field of characteristic zero and V a vector space over F with basis {x1, . . . , xn}.
(a) Verify that Symk(V ) is a vector space over F with basis given by the set of monomials in the

variables {x1, x2, . . . , xn} of total degree k. (Remark: There are
(
n+k−1
n−1

)
such monomials).

Hint : To show these elements are linearly independent, it is enough to use the universal property
to define a symmetric multilinear map V k → F that factors through SymkV which takes value 1 on
one basis element and 0 on all others.

(b) Verify that
∧k

V is isomorphic to the F–vector space with a basis given by elements of the form
xi1 ∧ xi2 ∧ · · · ∧ xik with i1 < i2 < · · · < ik. (Remark: There are

(
n
k

)
such elements).

(c) Suppose that A : V → V is a diagonalizable linear map with eigenvalues λ1, λ2, . . . , λn (listed with
multiplicity). Compute the eigenvalues of the maps induced by A on T kV , Symk(V ), and ∧kV .

(d) Show that you can identify Sym∗V , and
∧∗

V as direct summands of T ∗V via the (split) maps

x1x2 · · ·xk 7−→
1

k!

∑
σ∈Sk

σ(x1⊗x2⊗· · ·⊗xk) and x1∧x2∧· · ·∧xk 7−→
1

k!

∑
σ∈Sk

sign(σ)σ(x1⊗x2⊗· · ·⊗xk)

(We are using the assumption that F has characteristic zero, so the integer k! is invertible in F.)

(e) Show that V ⊗F V ∼= Sym2(V )⊕ ∧2V .

(f) Show that if V has dimension at least 2, then V ⊗F V ⊗F V % Sym3(V )⊕ ∧3V .

4. Let G be a finite group, and F a field. You may use properties of the trace without proof.

(a) Let G→ GL(U) be any representation of G. Citing facts from linear algebra (which you don’t need
to prove), explain why the trace of the matrix representing a given element g ∈ G is well-defined in
the sense that it will be the same in any isomorphic representation of G.

(b) A permutation representation of G on a finite-dimensional F-vector space V is a linear representation
ρ : G→ GL(V ) in which elements act by permuting some basis B = {b1, . . . bm} for V . Show that,
with respect to the basis {b1, . . . , bm}, for each element g ∈ G, ρ(g) is represented by an m × m
permutation matrix, a square matrix that has exactly one entry 1 in each row and each column,
and zero elsewhere. Use this description of matrices ρ(g) to show that the trace of ρ(g) is equal to
the number of basis elements bi fixed by ρ(g).
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(c) Our first example of a permutation representation was given by the action of Sn on Fn by permuting
the basis e1, . . . , en. Show, in contrast, that the subrepresentation

U = {a1e1 + a2e2 + · · ·+ anen | a1 + a2 + · · ·+ an = 0} ⊆ Fn

is not a permutation representation with respect to any basis for U .
Hint: Warm-up Question 17(h). What is the trace of an n–cycle?

(d) The group ring of F[G] is a left module over itself. This corresponds to permutation representation
of the group G on the underlying vector space F[G], called the (left) regular representation of G.
Find the degree of this representation. In what basis is this a permutation representation, and how
many G-orbits does this basis have?

(e) For any g ∈ G, compute the trace of the matrix representing g in the regular representation.

5. Let V be a C[x]–module that is finite dimensional over C, where x acts on V by a C–linear map T .
According to the structure theorem for finitely generated modules over a PID, we can write

V ∼=
C[x](
p1(x)

) ⊕ C[x](
p2(x)

) ⊕ · · · ⊕ C[x](
pk(x)

)
for some monic polynomials pi(x) ∈ C[x] such that p1(x) divides p2(x), p2(x) divides p3(x), etc.

The monic polynomial pk(x) is called the minimal polynomial of T , and the product p1(x)p2(x) · · · pk(x)
is called the characteristic polynomial of T . By construction the minimal and characteristic polynomials
have the same set of roots (possibly with different multiplicities).

(a) Verify that if λ ∈ C is a root of pi(x), then
pi(x)

(x− λ)
∈ C[x](

pi(x)
) is an eigenvector of T with eigenvalue

λ.

(b) Suppose that µ ∈ C is not a root of pk(x) (and therefore not a root of pi(x) for any i). Show that µ
is not an eigenvalue of T . Conclude that the eigenvalues of T are precisely the roots of the minimal
polynomial pk(x).
Hint: Recall that an eigenvector for µ is a nonzero element of ker(T − µI), where I is the identity

matrix. Consider the projection of a µ–eigenspace onto the summand C[x](
pi(x)

) for each i, and notice

that the polynomial (x− µ) is coprime to pi(x).

(c) Suppose the roots of pk(x) are distinct, ie, they each occur with multiplicity one. Show that T is
diagonalizable. Hint: Chinese Remainder Theorem.

(d) Show that Ann(V ) =
(
pk(x)).

(e) Show that Ann(V ) is equal to the set

{anxn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ C[x] | anTn + an−1T

n−1 + · · ·+ a1T + a0I is the zero map}

Conclude that if p(T ) = 0 for some polynomial p(x), every eigenvalue of T is a root of p(x).

(f) Suppose the linear map T has finite order, that is, Tn = I for some n ∈ Z≥0. Show that T is
diagonalizable, and that all its eigenvalues are nth roots of unity.

(g) Let G be a finite group of order n, and let ρ : G → GL(V ) be a representations of G on a finite
dimensional vector space V . Conclude that for every g ∈ G the linear map ρ(g) is diagonalizable,
and its eigenvalues are all nth roots of unity.

6. Bonus (Optional). Let Cd be the canonical permutation representation of the symmetric group Sd,

and consider the induced action on
∧k Cd. Prove that

1

d!

∑
σ∈Sd

(
Trace

(
σ y ∧kCd

))2
= 2 for any d ≥ 1 and 0 ≤ k ≤ d− 1.

We will see that with character theory, this result implies that
∧k

U is an irreducible Sd–representation
for all 0 ≤ k ≤ d− 1.
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