Reading: Fulton–Harris Chapter 2.1–2.4.

Summary of definitions and main results

Definitions we've covered: V^G , isotypic component, class function, character, character table, the inner product $\langle -, - \rangle_G$

Main results: decomposition into irredcible representations is unique, irreducible characters form a basis for the space of class functions, orthogonality relations,

Warm-Up Questions

- 1. Suppose that V is a finite dimensional vector space over \mathbb{F} , and $T: V \to V$ is a diagonalizable linear map. Show that the restriction of T to any T-invariant subspace $W \subseteq V$ will also be diagonalizable, and therefore W must be a direct sum of eigenspaces of T.
- 2. Let G be a finite group. Show that an $\mathbb{F}[G]$ -module V is finitely generated if and only if it is finite dimensional. What if G is infinite?
- 3. Let G be a finite group and $\phi : G \to GL(V)$ a G-representation over a field \mathbb{F} with character $\chi_V : G \to \mathbb{F}$. Prove that if V is 1-dimensional, then $\chi_V = \phi$. Show by example that if V is at least 2 dimensional, χ_V may not be a group homomorphism.
- 4. Let V, W be two representations of a group G, and let U_i be an irreducible G-representation. Let $T: V \to W$ be a G-equivariant map. Explain and prove the sense in which T must respect the isotypic component of U_i in V and W.
- 5. Let G be a finite group and U an irreducible G-representation over \mathbb{C} .
 - (a) Show that the G-representation $V \cong U \oplus U$ has infinitely many distinct direct sum decompositions into two copies of U.
 - (b) Describe the \mathbb{C} -vector space of G-equivariant maps $\operatorname{Hom}_{\mathbb{C}[G]}(U^{\oplus a}, U^{\oplus b})$.
 - (c) Which of the maps $\operatorname{Hom}_{\mathbb{C}[G]}(U^{\oplus a}, U^{\oplus b})$ are isomorphisms?
- 6. Let G be a finite group. Verify that $\langle -, \rangle_G$ satisfies that conjugate symmetry, linearity, and positive definiteness properties that define an inner product.
- 7. Let G be a finite group.
 - (a) State the formula for the inner product on complex-valued class functions of G.
 - (b) Let $U = \sum_{i} V_i^{\oplus a_i}$ and $W = \sum_{j} V_j^{\oplus b_j}$ for distinct irreducible representations V_i . Compute $\langle \chi_W, \chi_U \rangle_G$.
 - (c) Explain why the following results about character theory hold.
 - (i) Characters of irreducible representations are orthonormal.
 - (ii) Characters of irreducible representations are linearly independent.
 - (iii) The number of irreducible representations is at most the number of conjugacy classes of G.
 - (iv) A *G*-representation *V* is irreducible if and only if $\langle \chi_V, \chi_V \rangle_G = 1$.
 - (v) A representation V is determined up to isomorphism by its character.
- 8. Let G be a finite group. Prove that a complex-valued class function on G is a character if and only if it is a nonnegative integer linear combination of irreducible characters.
- 9. Let G be a finite group. Prove that the dimension of the space of class functions $G \to \mathbb{F}$ over \mathbb{F} is equal to the number of conjugacy classes of G.

- 10. Let G be a finite group. We saw in class that, as a module over itself, $\mathbb{C}[G] \cong \bigoplus_i V_i^{\oplus \dim_{\mathbb{C}}(V_i)}$, where $\{V_i\}$ is a complete set of non-isomorphic irreducible representations of G. What is the multiplicity of the trivial representation in $\mathbb{C}[G]$? Find a basis for this subrepresentation.
- 11. Let G be a group, and V and U be irreducible complex representations of G.
 - (a) Show by example that $U \otimes_{\mathbb{C}} V$ may or may not be an irreducible *G*-representation.
 - (b) Prove that if U is 1-dimensional, then $U \otimes_{\mathbb{C}} V$ is an irreducible G-representation.
- 12. Let G be a finite group.
 - (a) If $\phi: G \to \operatorname{GL}(V)$ is a *G*-representation, prove that $\phi(g): V \to V$ is *G*-equivariant if and only if $\phi(g)$ is central in $\phi(G)$.
 - (b) Let χ be an irreducible character of G. Prove that for every element g in the center of G, $\chi(g) = \xi\chi(1)$, where ξ is a root of unity in \mathbb{C} .
- 13. Recall the character table for the complex representations of the symmetric group S_3 .

	(ullet)(ullet)(ullet)	(ulletullet)(ullet)	$(\bullet \bullet \bullet)$
$\underline{\mathrm{Trv}}$	1	1	1
Alt	1	-1	1
$\underline{\mathrm{Std}}$	2	0	-1

- (a) Let \mathbb{C}^3 denote the canonical permutation representation of S_3 . Compute the character of <u>Alt</u> $\otimes_{\mathbb{C}}$ Sym² \mathbb{C}^3 .
- (b) Use the character table to decompose $\underline{\text{Alt}} \otimes_{\mathbb{C}} \text{Sym}^2 \mathbb{C}^3$ as a sum of irreducible representations (in the sense of finding the multiplicity of each irreducible representation in the decomposition).
- (c) Verify that the orthogonality relations hold for this character table.
- 14. Find two non-isomorphic S_3 -representations that are the same dimension. Explain why dimension is an isomorphism invariant of G-representations, but is not sufficient to distinguish non-isomorphic representations.
- 15. For $n \geq 2$, let \mathbb{C}^n be the canonical permutation representation of S_n .
 - (a) Prove that $\langle \mathbb{C}^n, \mathbb{C}^n \rangle_{S_n} = 2$.
 - (b) Use this result to conclude that the standard representation is irreducible for every $n \ge 2$.
- 16. (a) Compute the character table of the cyclic group $G = \mathbb{Z}/4\mathbb{Z}$,
 - (b) Verify the orthogonality relations on the row and columns of the character table.
 - (c) Compute the character of $\bigwedge^3 \mathbb{C}[G]$, and determine its decomposition into irreducible characters.
- 17. Let G be a finite group and C be its character table (of all irreducible characters).
 - (a) Show that the "orthogonality of characters" result is equivalent to the statement that the matrix C satisfies the relation $\overline{C}DC^T = I$ for a certain diagonal matrix D. What is D?
 - (b) Conclude from this equation that $C^T \overline{C} = D^{-1}$. Use this equation to derive the second orthogonality result for characters.
 - (c) Explicitly verify the relations $\overline{C}DC^T = I$ and $C^T\overline{C} = D^{-1}$ for the character table for S_3 .
- 18. Prove that the character table is an invertible matrix.

Assignment Questions

- 1. Let G be a finite group. In this question we will describe the ring structure on the group ring $\mathbb{C}[G]$. Let V_1, \ldots, V_k denote a complete list of non-isomorphic irreducible complex G-representations.
 - (a) The action of G on a representation V is equivalent to the data of a map of rings $\mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(V)$, so we obtain a map of rings $\mathbb{C}[G] \to \bigoplus_{i=1}^{k} \operatorname{End}_{\mathbb{C}}(V_i)$. Show that this map is injective. *Hint:* First show that the regular representation is faithful.
 - (b) Conclude (by a dimension count) that there is an isomorphism of rings $\mathbb{C}[G] \cong \bigoplus_{i=1}^{k} \operatorname{End}_{\mathbb{C}}(V_i)$
- 2. (a) Compute the character table for the symmetric group S_5 over \mathbb{C} .
 - (b) Let \mathbb{C}^5 denote the canonical permutation representation of S_5 . Use the character table to find the decomposition of Sym² \mathbb{C}^5 into irreducible S_5 -representations.
- 3. (Induced representations) Suppose $H \subseteq G$ are finite groups, and k is a field. Given a finite dimensional G-representation W, we can restrict the action of G to the action of $H \subset G$. The resulting H-representation is denoted $\operatorname{Res}_{H}^{G}W$.

Conversely, given a finite dimensional group representation V of H over k (viewed as a k[H]-module), we can construct a representation of G by extension of scalars. Since k[H] is a subring of k[G], we may view k[G] as a right k[H]-module. Define a k[G]-module, called the *induced representation* $\operatorname{Ind}_{H}^{G}V$, by

$$\operatorname{Ind}_{H}^{G}V := k[G] \otimes_{k[H]} V.$$

(a) Cite properties of the tensor product to show that

$$\operatorname{Ind}_{H}^{G}(U \oplus U') \cong \operatorname{Ind}_{H}^{G}U \oplus \operatorname{Ind}_{H}^{G}U'$$
 and $\operatorname{Ind}_{K}^{G}(\operatorname{Ind}_{H}^{K}V) \cong \operatorname{Ind}_{H}^{G}V$

for any representations U, U' of H or subgroups $H \subseteq K \subseteq G$.

(b) Let G/H be the set of left cosets of G in H, and let $\{\sigma_i\}$ be a set of representatives of each coset. This means for each $g \in G$ and $\sigma_i \in G/H$, there is some $h \in H$ and $\sigma_j \in G/H$ such that $g\sigma_i = \sigma_j h$. Show that $\operatorname{Ind}_H^G V = k[G] \otimes_{k[H]} V$ is isomorphic to the G-representation

$$\bigoplus_{\sigma_i \in G/H} \sigma_i V$$

where $\sigma_i V := \{\sigma_i v \mid v \in V\}$ has an action of G by $g(\sigma_i v) = \sigma_j h(v)$.

- (c) Given an *G*-representation *W* and *H*-representation *V*, find the degrees of $\operatorname{Res}_{H}^{G}W$ and $\operatorname{Ind}_{H}^{G}V$.
- (d) What representation is $\operatorname{Ind}_{H}^{G}V$ when H is the trivial group and $V \cong k$ the trivial representation?
- (e) Let $G = S_n$, $H = S_{n-1}$, and V be the degree 1 trivial S_{n-1} -representation. What is $\operatorname{Ind}_{S_n}^{S_n} V$?
- (f) **(Ind-Res adjunction)** Prove that induction satisfies the following universal property: If U is any representation of G, then any map of k[H]-modules $\phi: V \to \operatorname{Res}_{H}^{G}U$ can be promoted uniquely to a map of k[G]-modules $\Phi: \operatorname{Ind}_{H}^{G}V \to U$, such that Φ restricts to the map ϕ on pure tensors of the form $1 \otimes v \in k[G] \otimes_{k[H]} V$. Moreover, every k[G]-module map $\operatorname{Ind}_{H}^{G}V \to U$ arises in this way. In other words, there is a natural identification of k-modules

$$\operatorname{Hom}_{k[H]}(V, \operatorname{Res}_{H}^{G}U) \cong \operatorname{Hom}_{k[G]}(\operatorname{Ind}_{H}^{G}V, U).$$

Hint: It suffices to show this is a special case of the tensor-Hom adjunction from Homework #5. (It is a fact that you do not need to prove that this isomorphism of abelian groups is k-linear).

(g) (Frobenius Reciprocity) Conclude that for finite dimensional representations over \mathbb{C} ,

$$\langle \chi_{\operatorname{Res}_{H}^{G}U}, \chi_{V} \rangle_{H} = \langle \chi_{U}, \chi_{\operatorname{Ind}_{H}^{G}V} \rangle_{G}.$$

Show in particular that if V and U are irreducible representations of H and G, respectively, then the multiplicity of the k[H]-representation V in $\operatorname{Res}_{H}^{G}U$ is equal to the multiplicity of the k[G]representation U in $\operatorname{Ind}_{H}^{G}V$.

- 4. Let V be an irreducible complex representation of a finite group G, and let H be an index-2 subgroup of G.
 - (a) Prove that $\operatorname{Res}_{H}^{G}V$ consists of either one or two irreducible *H*-representations. Prove moreover that the second case occurs if and only if $V \cong V \otimes_{\mathbb{C}} U$, where *U* is the 1-dimensional nontrivial representation $G \to G/H \cong \{\pm 1\} \subseteq GL(\mathbb{C})$.
 - (b) Suppose a group G has an abelian subgroup of index 2. Show that any irreducible representation of G has degree at most 2.
 - (c) Conclude that each irreducible complex representation of a dihedral group must have degree 1 or 2.
- 5. Let $T: V \to V$ be a linear map on a *n*-dimensional \mathbb{F} -vector space V. Recall from the last assignment that you found a basis e_1, \ldots, e_n for V so that T is a sum of Jordan blocks. This is called the *Jordan* canonical form of T. Let I denote the identity matrix.

Recall that an *eigenvector* v of T with *eigenvalue* λ is defined to be a nonzero element of ker $(\lambda I - T)$, and that the *eigenspace* E_{λ} is defined to be the subspace of V

 $E_{\lambda} = \ker(\lambda I - T) = \{\text{eigenvectors of } T \text{ with eigenvalue } \lambda\} \cup \{0\}$

For an eigenvalue λ of T, define the algebraic multiplicity of λ to be the multiplicity of the root $(x - \lambda)$ in the characteristic polynomial of T, and the geometric multiplicity to be the dim_{\mathbb{F}} (E_{λ}) .

- (a) Let $J_{\lambda,k}$ denote the $k \times k$ Jordan block with diagonal entry λ . Prove that the characteristic polynomial and minimal polynomial of $J_{\lambda,k}$ are both equal to $(x \lambda)^k$.
- (b) For any linear map T with eigenvalue λ , show that the geometric multiplicity of λ the dimension of the eigenspace E_{λ} is equal to the number of Jordan blocks with diagonal entry λ in the Jordan canonical form of T.
- 6. Bonus (optional). Compute the character tables for the dihedral groups D_5 (the symmetries of a pentagon) and D_6 (the symmetries of a hexagon).