Reading: Dummit-Foote 18.3, 19.1, 19.3. Fulton-Harris Ch 3.1, 3.3-3.5.

Summary of definitions and main results

Definitions we've covered: induced representations, real and quaternionic structures, generalized eigenspaces.
Main results: character tables for S_{4} and A_{5}, Frobenius reciprocity, Mackey's criterion.

Warm-Up Questions

1. Let U and W be complex representations of a finite group G. Show that $(U \oplus W)^{G} \cong U^{G} \oplus W^{G}$.
2. Suppose that G is a group with N_{G} conjugacy classes, and H a group with N_{H} conjugacy classes. Verify that $G \times H$ has $N_{G} N_{H}$ conjugacy classes.
3. Verify that a conjugacy class in S_{n} will break up into two conjugacy classes in A_{n} if and only if it corresponds to a cycle type where all cycle lengths are odd and distinct.
4. Let G be a finite group and H a subgroup. Let e be the identity element of G.
(a) Show that $\operatorname{Ind}_{H}^{G} \mathbb{C}[H] \cong \mathbb{C}[G]$. Note the special case $\operatorname{Ind}_{\{e\}}^{G} \mathbb{C} \cong \mathbb{C}[G]$.
(b) Consider the trivial action of H on \mathbb{C}. Show that $\operatorname{Ind}_{H}^{G} \mathbb{C}$ is the permutation representation of G on the set of cosets G / H.
5. Use Frobenius reciprocity to perform the following computations.
(a) Let $C_{3}=\{1,(123),(321)\} \subseteq S_{3}$, and let V be the irreducible trivial $C_{3}-$ representation. Find the decomposition of the induced S_{3}-representation $\operatorname{Ind}_{C_{3}}^{S_{3}} V$ into irreducible representations.
(b) Do the same for the irreducible $C_{3}-$ representation where (123) acts by mulitplication by $e^{\frac{2 \pi i}{3}}$.
(c) Let $C_{2}=\{1,(12)\} \subseteq S_{3}$. Decompose the $S_{3}-$ representations induced from the trivial and the nontrivial irreducible representations of C_{2}.
6. Show that the matrix $\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$ satisfies the polynomial $x^{2}-x-2$. What is its minimal polynomial?
7. Find the characteristic polynomial and the minimal polynomials of the following matrices.

$$
\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

8. For each of the following $\mathbb{C}[x]$-modules, write the Jordan form of the linear map "multiplication by x ". State the minimal and characteristic polynomials.

$$
\frac{\mathbb{C}[x]}{(x-1)^{2}} \oplus \frac{\mathbb{C}[x]}{(x-1)(x-2)} \quad \frac{\mathbb{C}[x]}{(x-1)(x-2)(x-3)} \quad \frac{\mathbb{C}[x]}{(x-1)} \oplus \frac{\mathbb{C}[x]}{(x-1)^{2}} \oplus \frac{\mathbb{C}[x]}{(x-1)^{2}}
$$

9. Determine all possible Jordan forms for linear maps with characteristic polynomial $(x-1)^{3}(x-2)^{2}$.
10. (a) Suppose a complex matrix A satisfies the equation $A^{2}=-2 A-1$. What are the possibilities for its Jordan form?
(b) Suppose a complex matrix A satisfies $A^{3}=A$. Show that A is diagonalizable. Would this result hold if A had entries in a field of characteristic 2 ?
11. Prove that an $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Assignment Questions

1. (Real and quaternionic structures.) Let G be a finite group. All representations are assumed finite dimensional.
Hint: You are welcome to consult Fulton-Harris Chapter 3.5. Be sure to rephrase and fill in the details of any proof from this section that you wish to use.
(a) Show that every complex G-representation V has a Hermitian inner product $\langle-,-\rangle$ that is is G-invariant, that is,

$$
\langle g v, g w\rangle=\langle v, w\rangle \quad \text { for all } v, w \in V \text { and } g \in G
$$

Hint: Use the averaging map.
(b) Let V be a complex G-representation. Prove the isomorphisms of G-representations

$$
\left(V \otimes_{\mathbb{C}} V\right)^{*} \cong V^{*} \otimes_{\mathbb{C}} V^{*}
$$

Conclude that $\left(V^{*} \otimes_{\mathbb{C}} V^{*}\right)$ is the \mathbb{C}-vector space of bilinear forms on V.
(c) Interpret the decomposition

$$
\left(V^{*} \otimes_{\mathbb{C}} V^{*}\right) \cong \operatorname{Sym}^{2}\left(V^{*}\right) \oplus \bigwedge^{2} V^{*}
$$

as a decomposition of the space of bilinear forms on V.
(d) A representation V of G over \mathbb{C} is called real if $V \cong V_{0} \otimes_{\mathbb{R}} \mathbb{C}$ for some representation V_{0} over \mathbb{R}. Show that V is real if and only if V admits a G-equivariant real structure, that is, a conjugate-linear map $R: V \rightarrow V$ such that $R^{2}(v)=v$ for all $v \in V$.
(e) Show that an irreducible complex representation V of G is real if and only if there is a G-invariant nondegenerate symmetric bilinear form $B(-,-)$ on V.
(f) A representation V of G over \mathbb{C} is called quaternionic if V has a G-equivariant conjugate-linear $\operatorname{map} J: V \rightarrow V$ such that $J^{2}(v)=-v$ for all $v \in V$. Prove that if V is irreducible then this is equivalent to the existence of a G-invariant nondegenerate bilinear form $H(-,-)$ on V that is skew-symmetric, that is,

$$
H(v, w)=-H(w, v) \quad \text { for all } v, w \in V
$$

(g) Assume V is irreducible. Interpret the condition that V is real and the condition that V is quaternionic as conditions on the invariants

$$
\left(V^{*} \otimes_{\mathbb{C}} V^{*}\right)^{G} \cong\left(\operatorname{Sym}^{2}\left(V^{*}\right)\right)^{G} \oplus\left(\bigwedge^{2} V^{*}\right)^{G}
$$

(h) (The Frobenius-Schur indicator.) Assume V is irreducible. Prove that

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{V}\left(g^{2}\right)= \begin{cases}1 & V \text { is real } \\ -1 & V \text { is quaternionic } \\ 0 & \text { otherwise }\end{cases}
$$

Hint: $\left(V^{*} \otimes_{\mathbb{C}} V^{*}\right)^{G} \cong \operatorname{Hom}_{\mathbb{C}}\left(V^{*}, V\right)^{G} \cong \operatorname{Hom}_{\mathbb{C}[G]}\left(V^{*}, V\right)$. Schur's Lemma.
(i) Prove that the character of a representation V is real if and only if V is either real or quaternionic.
2. Let $T: V \rightarrow V$ be a linear map on a n-dimensional \mathbb{C}-vector space V. Recall the decomposition of V

$$
V \cong \frac{\mathbb{C}[x]}{\left(x-\lambda_{1}\right)^{k_{1}}} \oplus \frac{\mathbb{C}[x]}{\left(x-\lambda_{2}\right)^{k_{2}}} \oplus \cdots \oplus \frac{\mathbb{C}[x]}{\left(x-\lambda_{d}\right)^{k_{d}}}
$$

The structure theorem implies that this decomposition is unique up to the order of the factors.
For an eigenvalue λ of T, let E_{λ} denote the corresponding eigenspace, and define the generalized eigenspace of λ to be the subspace

$$
G_{\lambda}=\left\{v \mid(\lambda I-T)^{k} v=0 \text { for some integer } k>0\right\} \subseteq V
$$

(a) Show (in a sentence) that $E_{\lambda} \subseteq G_{\lambda}$.
(b) Show that the generalized eigenspace G_{λ} of V is precisely the direct sum of submodules of the form $\mathbb{C}[x] /(x-\lambda)^{k}$ in the decomposition of V.
(c) Conclude that V decomposes into a direct sum of generalized eigenspaces for T, and that the algebraic multiplicity of an eigenvalue λ is equal to sum of the sizes of the corresponding Jordan blocks, which is equal to the dimension of G_{λ}.
(d) Note as a corollary that dimension of the eigenspace E_{λ} is no greater than the algebraic multiplicity of λ. Under what conditions are they equal?
(e) Briefly explain how you can compute the Jordan canonical form of a linear map T acting on V (which is uniquely defined up to order of the blocks) by computing its eigenvalues λ, and computing the dimensions of the $\operatorname{ker}(T-\lambda I)^{m}$ for each eigenvalue λ and $m \leq \operatorname{dim}_{\mathbb{C}}(V)$. No justification needed.
(f) State instructions for how to read off the following data from the Jordan canonical form of a linear map T, and state each for the specific map T_{0} given below.
You do not need justify instructions or show your computations.

$$
T_{0}=\left[\begin{array}{llllllllll}
2 & 1 & & & & & & & & \\
& 2 & & & & & & & & \\
& & 2 & 1 & & & & & & \\
& & & 2 & & & & & & \\
& & & & 2 & 1 & & & & \\
& & & & & 2 & & & & \\
& & & & & & 2 & & & \\
& & & & & & & 2 & & \\
& & & & & & & & 3 & 1 \\
& & & & & & & & & 3
\end{array}\right]
$$

(i) The eigenvalues of T (with algebraic multiplicity).
(ii) The determinant of T.
(iii) The characteristic polynomial of T.
(iv) The minimal polynomial of T.
(v) The eigenvalues of T (with geometric multiplicity).
3. Bonus (Optional). Let G be a finite group. Show that the dimension of any complex irreducible representation V of G must divide the order of G.
Hint: Dummit-Foote Ch 19.2 Corollary 5. You are welcome to read all relevant portions of DummitFoote, but write the solution in your own words and include any missing details.

