
Midterm Exam II
Math 122

30 May 2017
Jenny Wilson

Name:

Instructions: This exam has 5 questions for a total of 20 points.
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or the homeworks without proof, but do give a complete statement of the result you are using.
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1. (3 points) Recall that the (left) regular S3–representation C[S3] is the group ring C[S3]
viewed as a left module over itself. Let V ∼= C[S3] be the same C–vector space, but this
time with the structure of an S3–representation induced by the action of S3 on itself by
conjugation (instead of left multiplication).

i. Compute the character of V , and fill in the corresponding row of the table below.

First, we recall that the conjugation action of a permutation σ ∈ Sn is by relabelling
an element of Sn (as written in cycle notation):

σ(a1 a2 · · · ak)σ−1 = (σ(a1)σ(a2) · · · σ(ak)), ai ∈ {1, 2, . . . , n}.

We note moreover that since the action on C[S3] is by permuting the basis S3, the
values of the character are given by the number of basis elements fixed by each
element. We compute this for an arbitrary representative of each conjugacy class.

The identity element fixes all 6 permutations in S3.
The 2–cycle (1 2) fixes the 2 basis elements e, (1 2)
The 3–cycle (1 2 3) fixes the 3 basis elements e, (1 2 3), (3 2 1).

(•)(•)(•) (• •)(•) (• • •)

Trv 1 1 1
Alt 1 −1 1
Std 2 0 −1

V 6 2 3

ii. Determine the multiplicities of the irreducible constituents of V .

For each irreducible representation Vi,

Multiplicity of Vi in V = 〈χVi , χV 〉S3 =
1

|S3|
∑

Cong classes C

|C|χVi(C)χV (C).

Multiplicity of Trv = 1
6

(
1(1)(6) + 3(1)(2) + 2(1)(3)

)
= 18

6
= 3

Multiplicity of Alt = 1
6

(
1(1)(6) + 3(−1)(2) + 2(1)(3)

)
= 6

6
= 1

Multiplicity of Std = 1
6

(
1(2)(6) + 3(0)(2) + 2(−1)(3)

)
= 6

6
= 1

So V ∼= Trv⊕3 ⊕ Alt ⊕ Std.
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2. Let G be a finite group.

(a) (4 points) Prove that every character of a complex G–representation is real-valued
if and only if every element of G is conjugate to its inverse.

Let ρ : G→ GL(V ) be a complex G–representation of degree n.

Lemma: χV (g−1) = χV (g) for all g ∈ G.

Proof of Lemma: We proved on homework that the linear map ρ(g) is diagonalizable,
and that its eigenvalues λ1, . . . , λn are roots of unity. By definition

χV (g) = Trace(ρ(g)) = λ1 + λ2 + · · ·+ λn.

But then the eigenvalues of ρ(g−1) = ρ(g)−1 are λ−11 , . . . λ−1n , and

χV (g−1) = λ−11 + λ−12 + · · ·+ λ−1n

= λ1 + λ2 + · · ·+ λn

= λ1 + λ2 + · · ·+ λn

= χV (g). �

So suppose any g ∈ G is conjugate to its inverse. Since χV is a class function,

χV (g) = χV (g−1) = χV (g) for all g ∈ G, so χV (g) is real as claimed.

Suppose conversely that every character χV of G is real-valued, so χV = χV . Let
g ∈ G, and Vi an irredcible G–representation. By the Lemma,

χVi(g) = χVi(g
−1) = χVi(g

−1),

and we see that every irreducible character agrees on g and g−1. But the columns
of the character table for G are linearly independent (in fact, orthogonal), so the
columns for the conjugacy class of g and the conjugacy class of g−1 cannot coincide
unless they are the same column. We conclude that g and g−1 are conjugate.

(b) (1 point) Conclude that every finite-dimensional complex G–representation is self-
dual if and only if every element of G is conjugate to its inverse.

We proved that a finite-dimensional complex G–representation V is completely
determined by its character, and moreover that χV ∗ = χV . So V is self-dual if and
only if its character is real-valued, and this is true of every character if and only if
all elements of G are conjugate to their inverses.
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3. (4 points) Let p be a prime and Fp the field of order p. Let G be a finite group and H
a subgroup such that p does not divide the index m = |G/H|.
Suppose V is a G–representation of finite dimension over Fp, with the property that
every H–subrepresentation of ResGH(V ) has an (H–invariant) direct complement. Show
that any G–subrepresentation of V has a (G–invariant) direct complement.

We will mimic our proof of Maschke’s theorem. Let U be a G–subrepresentation of V .
By assumption, the short exact sequence of vector spaces

0 −→ U
ι−→ V −→ V/U −→ 0

is split when viewed as a sequence of Fp[H]–modules. The Splitting Lemma states that
this is equivalent to the existence of an H–equivariant splitting map π0 : V → U so that
π0 ◦ ι = idU . We will use a variation of our averaging operation to modify π0 to obtain a
splitting map π that is G–equivariant, which (by the Splitting Lemma) proves that the
sequence is also split as a sequence of Fp[G]–modules.

Let g1, . . . , gm be a choice of representatives of the cosets G/H. Since m is invertible in
Fp by assumption, we can define

π : V −→ U,

v 7−→ 1

m

m∑
i=1

giπ0
(
g−1i v

)
.

We will show that π is G–equivariant and that π ◦ ι = idU , so π is a splitting map. For
any g ∈ G, right-multiplication by g−1 permutes the cosets G/H by some permutation
σ ∈ Sm. For each i there is some hi ∈ H with g−1gi = gσ(i)hi. Then

π(gv) =
1

m

m∑
i=1

giπ0
(
g−1i gv

)
=

1

m

m∑
i=1

giπ0

(
h−1i g−1σ(i)v

)
=

1

m

m∑
i=1

gih
−1
i π0

(
g−1σ(i)v

)
(since π0 is H–equivariant),

=
1

m

m∑
i=1

ggσ(i)π0

(
g−1σ(i)v

)
= g

(
1

m

m∑
i=1

gσ(i)π0

(
g−1σ(i)v

))
(since the action of g is Fp–linear),

= gπ(v)

(since we have simply permuted the

terms of the sum defining π).

Finally, observe that, since the inclusion ι is necessarily G–equivariant, and π0 ◦ ι = idU ,

π(ι(u)) =
1

m

m∑
i=1

giπ0
(
g−1i ι(u)

)
=

1

m

m∑
i=1

giπ0
(
ι
(
g−1i u

))
=

1

m

m∑
i=1

gi
(
g−1i u

)
=
m

m
u = u.

Thus π is the desired splitting map, and the Splitting Lemma implies that ker(π) is a
G–invariant direct complement of U .
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4. (2 points) Define a complex Z–representation V where g = 1 ∈ Z acts by linear map
that is not diagonalizable. No justification needed.

The action of Z is completely specified by the image of the generator g = 1, which
can be any invertible complex matrix. So a solution is any choice of non-diagonalizable
invertible matrix. A typical example is the representation

Z −→ GL(C2)

1 7−→
[
1 1
0 1

]
.

5. (a) (2 points) Let S and R be rings. Let N be a left S–module and M an (R, S)–
bimodule. We have seen the universal property that uniquely determines the abelian
group M ⊗S N, and moreover that this tensor product is an R–module under the
action

r(m⊗ n) = (rm)⊗ n for r ∈ R,m ∈M,n ∈ N.
State a modified version of this universal property that will uniquely characterize
M ⊗S N as an R–module. No justification necessary.

Please include definitions of any terms (such as S–balanced) you use.

There is a map

ι : M ×N −→M ⊗S N
(m,n) 7−→ m⊗ n

The R–module M ⊗S N is uniquely
determined by the following property.
Given an R–module L and map

φ : M ×N → L,

the map φ factors uniquely through a
map of R–modules

Φ : M ⊗S N → L

M ×N

φ

$$

ι // M ⊗S N

Φ

��
L

whenever φ satisfies the folloiwng properties:

• The map φ is S–balanced: For all m,m1,m2 ∈M,n, n1, n2 ∈ N, and s ∈ S,

φ(m1 +m2, n) = φ(m1, n) + φ(m2, n),

φ(m,n1 + n2) = φ(m,n1) + φ(m,n2)

φ(ms, n) = φ(m, sn).

• The map φ is R–linear in the first argument. This means (along with the above
Z–linearity condition on the first argument) that

φ(rm, n) = rφ(m,n) for all m ∈M,n ∈ N, r ∈ R.
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(b) (4 points) Let R be a ring and S ⊆ R a subring. Let F be the free S–module on the
set B = {b1, . . . , bn}. Use the universal property of a free module and the universal
property of the tensor product to give a new proof that the R–module R ⊗S F is
free on the set

{1⊗ b1, . . . , 1⊗ bn} ∼= B.

(It is not necessary to use part (a), though you may quote part (a) without proof.)

Define maps of sets

B −→ R× F B −→ R⊗S F
bi 7−→ (1, bi) bi 7−→ 1⊗ bi

To prove that R ⊗S F is free on B,
we will show that given any R–module
L and any map of sets ϕ : B → L,
there is a unique map of R–modules
Φ : R ⊗S F → L making the adjacent
diagram commute.

B

ϕ

""

// R⊗S F

Φ

��
L

We wish to define a map ϕ̃ : R× F → L with ϕ̃(1, bi) = ϕ(bi) for bi ∈ B, satisfying
the criteria given in part (a). Any such map must satisfy

ϕ̃(1,
∑

i sibi) =
∑

i ϕ̃(1, sibi) =
∑

i ϕ̃(si, bi) =
∑

i siϕ̃(1, bi),

that is, it must be S–linear on F ∼= {1} × F ⊆ R × F . By the universal property
defining the free module F , there exists a unique S–linear map ϕ′ : F → L extending
ϕ, so let ϕ̃(1, f) = ϕ′(f). To make ϕ̃ commute with the R–action, we must define

ϕ̃(r, f) = rϕ̃(1, f) = rϕ′(f).

Then for all r, r1, r2 ∈ R, s ∈ S, and f, f1, f2 ∈ F ,

• ϕ̃(r, f1+f2) = rϕ′(f1+f2) = r(ϕ′(f1)+ϕ
′(f2)) = rϕ′(f1)+rϕ

′(f2) = ϕ̃(r, f1)+ϕ̃(r, f2)

• ϕ̃(rr1 + r2, f) = (rr1 + r2)ϕ
′(f) = r(r1ϕ

′(f)) + r2ϕ
′(f) = rϕ̃(r1, f) + ϕ̃(r2, f)

• ϕ̃(r, sf) = rϕ′(sf) = rsϕ′(f) = ϕ̃(rs, f)

It follows from part (a) that ϕ̃ factors uniquely through a map Φ : R⊗S F → L of
R–modules making the following diagram commute.

B

ϕ

++

// F

ϕ′

))

// R× F

ϕ̃

$$

// R⊗S F

Φ

��
L

Since ϕ uniquely determines ϕ̃, and ϕ̃ uniquely determines Φ, we conclude that
R⊗S F satisfies the universal property of the free module on B.
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