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1. An element e in a ring R is called central if er = re for all r ∈ R. An element e is
idempotent if e2 = e. Let M be an R–module.

(a) (2 points) Show that if a is central in R, then aM = {am | m ∈M} is a submodule
of M .

The set aM contains a0 = 0 and so is nonempty. Therefore by the Submodule
Criterion, it suffices to check that x + ry ∈ aM for all x, y ∈ aM and r ∈ R.
But, given arbitrary elements am, an ∈ aM and r ∈ R, a commutes with r by
assumption, so

am+ r(an) = am+ (ra)n = am+ (ar)n = am+ a(rn) = a(m+ rn).

Since M is a submodule (m+ rn) ∈M , so we conclude that am+ r(an) ∈ aM and
aM is a submodule as claimed.

(b) (1 point) Show that if e ∈ R is a central idempotent, then so is (1− e).

We check that (1− e) is central: for any r ∈ R, r commutes with e, therefore

r(1− e) = r − re = r − er = (1− e)r as desired.

We check that (1− e) is idempotent: since e2 = e,

(1− e)2 = 1− 2e+ e2 = 1− 2e+ e = 1− e as claimed.

(c) (3 points) Show that if e ∈ R is a central idempotent, then M ∼= eM ⊕ (1− e)M .

Parts (a) and (b) together imply that both eM and (1 − e)M are submodules of
M . Thus it suffices to show that

eM + (1− e)M = M, and eM ∩ (1− e)M = {0}.

Given any m ∈M , we can write

m = m+ em− em = em+ (1− e)m,

so m ∈ eM + (1− e)M , and we conclude eM + (1− e)M = M .

Now suppose m ∈ eM ∩ (1 − e)M , so we can write m = en = (1 − e)n′ for some
n, n′ ∈M . But multiplying through by e gives:

e(en) = e(1− e)n′

e2n = (e− e2)n′

en = (e− e)n′

en = 0

and so the m = 0. This proves that eM ∩ (1− e)M = {0} and concludes the proof.
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2. (3 points) Let R be a PID. Prove that any nonzero R–submodule M of R is isomorphic
to R as an R–module.

Since submodules M of R are precisely the ideals of R, and R is a PID, any nonzero
submodule M must be cyclically generated by a single nonzero element a ∈ R.

So suppose M = Ra, and consider the map

φ : R −→M = Ra

r 7−→ ra.

This map is an R–module homomorphism by the R–linearity Criterion: given x, y, r ∈ R,

φ(x+ ry) = (x+ ry)a = xa+ (ry)a = xa+ r(ya) = φ(x) + rφ(y)

and moreover it is surjective since an arbitrary element ra ∈ Ra has preimage r ∈ R.

Let k ∈ ker(φ). Then φ(k) = ka = 0. But a is nonzero and R is an integral domain, so
necessarily k = 0.

Then by the first isomorphism theorem,

M = φ(R) ∼= R/ker(φ) = R/0 ∼= R

and we conclude that M is isomorphic to R.
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3. Let R be a commutative ring, and let M,N be R–modules.

(a) (3 points) Suppose that M is finitely generated by B = {x1, . . . , xn} ⊂ M . Let
F ∼= Rn be the free R–module on B. Construct an injective map of R–modules

HomR(M,N) ↪→ HomR(F,N).

For clarity we denote the basis for F by {x1, . . . , xn}. By the universal property of
the free module F , there is a uniquely defined map Φ : F →M such that Φ(xi) = xi.
Then Φ induces a map

HomR(M,N)
Φ∗
−→ HomR(F,N)

f 7−→ f ◦ Φ

F

Φ∗(f)

  

Φ //M

f

��
N

To verify that this is map of R–modules, we use the R–linearity Criterion: for any
f, g ∈ HomR(M,N), r ∈ R, and x ∈ F

(Φ∗(f + rg))(x) = ((f + rg) ◦ Φ)(x)

= (f + rg)(Φ(x))

= f(Φ(x)) + rg(Φ(x))

= (f ◦ Φ)(x) + r(g ◦ Φ)(x)

= (Φ∗(f))(x) + r(Φ∗(g))(x)

so Φ∗(f + rg) = Φ∗(f) + rΦ∗(g), and Φ∗ is R–linear.

We next observe that Φ is surjective, since its image contains the generating set B:
given an arbitrary element x =

∑n
i=1 rixi ∈M ,

Φ

(
n∑
i=1

rixi

)
=

n∑
i=1

riΦ(xi) =
n∑
i=1

rixi by the definition and R–linearity of Φ,

so the formal sum
∑n

i=1 rixi ∈ F is a preimage of x.

We now show that Φ∗ injects. If f ∈ ker(Φ∗), then f ◦ Φ is the zero map, so the
image Φ(F ) is contained in ker(f). But Φ(F ) = M , so we conclude that f is the
zero map, and that Φ∗ injects.

(b) (1 point) Conclude that, if we additionally assume Nn is a Noetherian module,
then HomR(M,N) is a finitely generated R–module.

You proved on Homework #2 that

HomR(F,N) ∼= Nn.

Hence the map Φ∗ realizes HomR(M,N) as an R–submodule of the R–module Nn.
Since Nn is assumed to be Noetherian, this submodule must be finitely generated.
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4. (a) (2 points) Classify all submodules of the C[x]–module V ∼= C2, where x acts by the

matrix

[
0 1
0 0

]
. Justify your solution.

Any submodule of V must in particular be a C–linear subspace. The trivial submod-
ule {0} and the whole module V are always submodules, so it remains to determine
which 1–dimensional subspaces are submodules. A subspace W is a C[x]–submodule
exactly when it is closed under the action of x, and it suffices to check that x maps
a C–basis for W back into W .

So let W = spanC

([
a
b

])
be an arbitrary 1–dimensional subspace of V . Then

[
0 1
0 0

] [
a
b

]
=

[
b
0

]
,

but

[
b
0

]
is only contained in spanC

([
a
b

])
if the y–component b is zero. We con-

clude that the only one-dimensional submodule of V is the x–axis, the subspace

spanC

([
1
0

])
. A complete list of C[x]–submodules of V is:

{0}, spanC

([
1
0

])
, V.

(b) (2 points) Compute the tensor product Q/Z⊗Z Q/Z. Justify your solution.

We will prove Q/Z⊗Z Q/Z = {0}.
(In short, this is because Q/Z is both divisible and torsion.)

Since the tensor product is generated by simple tensors m ⊗ n, it suffices to show
that these vanish. So suppose that m is the equivalence class of a

b
and that n is the

equivalence class of c
d

in Q/Z, with a, b, c, d ∈ Z. Then

a

b
(mod Z)⊗ c

d
(mod Z) =

a

b
(mod Z)⊗ bc

bd
(mod Z)

=
a

b
(mod Z)⊗ b

( c
bd

(mod Z)
)

=
(a
b

(mod Z)
)
b⊗ c

bd
(mod Z)

=
ab

b
(mod Z)⊗ c

bd
(mod Z)

= 0 (mod Z)⊗ c

bd
(mod Z)

= 0.
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(c) (3 points) When we apply the contravariant functor HomZ(−,Z/3Z) to the short
exact sequence of abelian groups

0 −→ Z/3Z ψ−→ Z/9Z φ−→ Z/3Z −→ 0

a 7−→ 3a, b 7−→ b mod 3

then we obtain a sequence of abelian groups

0←− HomZ(Z/3Z,Z/3Z)
ψ∗
←− HomZ(Z/9Z,Z/3Z)

φ∗←− HomZ(Z/3Z,Z/3Z)←− 0

Compute this sequence by identifying each abelian group HomZ(A,Z/3Z) as a (pro-
ductive of) cyclic group(s), and explicitly describing where ψ∗ and φ∗ map a set of
generators of these abelian groups. Justify your solution.

You proved on Homework #1 that there are isomorphisms of abelian groups

HomZ(Z/3Z,Z/3Z)
∼=−→ Z/3Z HomZ(Z/9Z,Z/3Z)

∼=−→ Z/3Z
f 7−→ f(1) g 7−→ g(1)

The group HomZ(Z/3Z,Z/3Z) is cyclically generated by the map f1 such that f1(1) =
1 ∈ Z/3Z, and the group HomZ(Z/9Z,Z/3Z) is cyclically generated by the map g1 such
that g1(1) = 1 ∈ Z/3Z.

To compute the map φ∗, we must determine where it sends f1.

We will identify the resulting morphism

φ∗(f1) : Z/9Z→ Z/3Z

based on where it maps 1 ∈ Z/9Z.

By definition,

φ∗(f1)(1) = f1(φ(1)) = f1(1) = 1,

so φ∗ maps f1 to the generator g1 of
HomZ(Z/9Z,Z/3Z).

Next we compute the map ψ∗(g1). We see

ψ∗(g1)(1) = g1(ψ(1)) = g1(3) = 3 ≡ 0 ∈ Z/3Z,

so ψ∗(g1) is the zero map on Z/3Z, and ψ∗

is the zero map on HomZ(Z/3Z,Z/3Z).

Z/9Z

φ∗(f1)

""

mod 3

φ
// Z/3Z

f1

��
Z/3Z

Z/3Z

ψ∗(g1)

""

3

ψ
// Z/9Z

g1

��
Z/3Z

The resulting sequence is

0←− Z/3Z ψ∗=0←−−− Z/3Z φ∗=id←−−− Z/3Z←− 0

0 7−→ b, a 7−→ a
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