1. Recall that a group action of a group G on a set S is a map $G \times S \to S$ such that

 $g \cdot (h \cdot a) = (gh) \cdot a$ for all $g, h \in G, a \in S$ and $1 \cdot a = a$ for all $a \in S$.

Let M be an R-module. Show that this structure defines a group action of the multiplicative group R^{\times} on the set M.

- 2. Let $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ be an ascending chain of nested submodules of an *R*-module *M*. Show that $\bigcup_i M_i$ is a submodule of *M*.
- 3. Classify all submodules of the $\mathbb{C}[x]$ -module ...
 - (a) \mathbb{C}^2 with an action of x by the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
 - (b) $\mathbb{C}[x]/(x-\pi)^2$.
 - (c) \mathbb{C}^3 where x acts by a diagonalizable matrix with eigenvalues 1, 1, 2.
- 4. Classify the subgroups of the abelian group \mathbb{Q}/\mathbb{Z} .
- 5. Let R and S be commutative rings. Prove or disprove: For any ideal I in the product ring $R \times S$, I can be expressed as a product $I_R \times I_S$ where I_R is an ideal in R, and I_S an ideal in S.
- 6. Let M be an R-module.
 - (a) Prove that its annihilator $\operatorname{ann}(M)$ is a two-sided ideal of R, and that there is a well-defined action of $R/\operatorname{ann}(M)$ on M.
 - (b) Prove that this action is faithful.
- 7. Let M be an R-module, I a (right) ideal of R, and N a R-submodule. Prove the following statement, or find a counterexample:

If $\operatorname{ann}(I) = N$, then $\operatorname{ann}(N) = I$.

If the statement is false, determine whether you can replace the second equality = with either \subseteq or \supseteq to make a true statement.

- 8. Suppose that M, N are modules over a ring R, and that $S \subset R$ is a subring. Recall that M and N inherit S-module structures.
 - (a) Show that $\operatorname{Hom}_R(M, N) \subseteq \operatorname{Hom}_S(M, N)$.
 - (b) Find an example of a ring R, a proper subring $S \subset R$, and nonzero R-modules M and N so that $\operatorname{Hom}_R(M, N) = \operatorname{Hom}_S(M, N)$.
 - (c) Find an example of a rings $S \subseteq R$, and *R*-modules *M* and *N* so that $\operatorname{Hom}_R(M, N) \neq \operatorname{Hom}_S(M, N)$.
- 9. Let A, B, C, X be *R*-modules. Prove or disprove: if $A = B \oplus C$, then $(A \cap X) = (B \cap X) \oplus (C \cap X)$.
- 10. Let M be an R-module.
 - (a) Define Tor(M).
 - (b) Show by example that if R is not commutative, then Tor(M) may not be a submodule of M.
- 11. Let R be an integral domain, and M an R-module. Prove that $M/\operatorname{Tor}(M)$ is torision-free.
- 12. (a) Let \mathbb{F} be a field. Let V be an $\mathbb{F}[x]$ module where x acts by a linear transformation T. Under what conditions will an \mathbb{F} -linear map $S: V \to V$ be an element of $\operatorname{End}_{\mathbb{F}[x]}(V)$?
 - (b) Let $R = \mathbb{Z}[\sqrt{2}] = \{a + \sqrt{2} \mid a, b \in \mathbb{Z}\}$ and consider R as a module over itself. As an abelian group, $M = \mathbb{Z}[\sqrt{2}]$ is isomorphic to \mathbb{Z}^2 under the identification $a + b\sqrt{2}$ with $(a, b) \in \mathbb{Z}^2$. Show that $\operatorname{End}_{\mathbb{Z}}(M)$ is the matrix ring $M_{2\times 2}(\mathbb{Z})$, and identify the subset of matrices $\operatorname{End}_R(M) \subseteq M_{2\times 2}(\mathbb{Z})$ that commute with the action of R.

- 13. State and prove the first isomorphism theorem for R-modules.
- 14. Give an example of an integral domain R and two non-isomorphic finitely generated torsion R-modules with the same annihilators.
- 15. Let R be a commutative ring.
 - (a) Suppose R has the property that every ideal is principal. Show that every R-submodule of the module R is cyclic.
 - (b) Show additionally that if N is quotient of the R-module R, then every submodule of N is cyclic.
 - (c) Let R be PID and $R \to S$ a surjective ring map. Show that every ideal of S is principal. Show by example that S need not be an integral domain.
- 16. Let V be a $\mathbb{C}[x]$ -module such that V is finite dimensional as a vector space over \mathbb{C} . Prove that V is a torsion module.
- 17. Let $\phi: M \to N$ be a homomorphism of R-modules. Let I be a right ideal of R. Let $\operatorname{ann}_M(I)$ denote the annihilator of I in M, and $\operatorname{ann}_N(I)$ the annihilator of I in N. Prove or find a counterexample: $\phi(\operatorname{ann}_M(I)) \subseteq \operatorname{ann}_N(I)$.
- 18. Let M and N be R-modules, and I an ideal of R contained in $\operatorname{ann}(M)$ and $\operatorname{ann}(N)$. Show that any map of R-modules $\phi: M \to N$ is also a map of (R/I)-modules. Conclude that $\operatorname{Hom}_R(M, N) = \operatorname{Hom}_{R/I}(M, N)$.
- 19. Let R be a ring and $S \subseteq R$ a subring. An R-module M has the structure of an S-module under restriction of scalars. Show that if M is finitely generated as an S-module, then it is finitely generated as an R-module. Is the converse true?
- 20. (a) If $a \in R$, prove that $Ra \cong R/ann(a)$, where ann(a) denotes the annihilator of the left ideal generated by a.
 - (b) Let M be an R-module. For $a, b \in M$, let $A = \{a, b\}$. Prove or disprove: $RA \cong R/I$, where I is the annihilator of the submodule generated by a and b.
- 21. Let M be and R-module with submodules A and B. Prove that the map $A \times B \longrightarrow A + B$ is an isomorphism if and only if $A \cap B = \{0\}$.
- 22. Give an example of a finitely generated R-module M and a submodule that is not finitely generated.
- 23. (a) Let R be an integral domain. An R-module M is torsion if M = Tor(M), that is, for every $m \in M$ there is some nonzero $r \in R$ so that rm = 0. Let A be a finitely generated R-module and B a submodule. Show that A/B is torsion if and only if there is some nonzero $r \in R$ so that $rA \subseteq B$.
 - (b) Show by example that this result can fail without the assumption that A is finitely generated. (Hint: Consider the \mathbb{Z} -module \mathbb{Q}).
- 24. Let S be the set of all sequences of integers $(a_1, a_2, a_3, ...)$ that are nonzero in only finitely many components (in other words, all functions $\mathbb{N} \to \mathbb{Z}$ with finite support). Verify that S is a ring (without identity) under componentwise addition and multiplication. Is S a finitely generated S-module?
- 25. Let R be a ring.
 - (a) Give the definition of a *free* R-module on a set A.
 - (b) Given a set A, explain how to construct a free R-module F(A) on A.
 - (c) State the universal property for a free R-module.
 - (d) Verify that F(A) satisfies this universal property.
 - (e) Prove that the universal property determines F(A) uniquely up to unique isomorphism.
 - (f) Show that F defines a covariant functor from the category of sets to the category of R-modules.

- 26. Let M be an R-module, and $x_1, x_2, \ldots, x_n \in M$.
 - (a) Define what it means for x_1, x_2, \ldots, x_n to be *R*-linearly independent. Show that x_1, x_2, \ldots, x_n are *R*-linearly independent if and only if the following map is injective:

$$R^n = Re_1 \oplus Re_2 \oplus \dots \oplus Re_n \longrightarrow M$$
$$e_i \longmapsto x_i$$

- (b) Define what it means for $B = \{x_1, x_2, \dots, x_n\}$ to be a *basis* for *RB*. Show that *B* is a basis for *RB* if and only if x_1, \dots, x_n are linearly independent.
- 27. Let R be a commutative ring. Show that every R-module is free if and only if R is a field.
- 28. Suppose that R is a ring and that S is a subring.
 - (a) Suppose that F is a free R-module. Prove or disprove: F is a free S-module after restriction of scalars to S.
 - (b) Suppose that M is an R-module that is free as an S-module after restriction to S. Prove or disprove: M must be a free R-module.
- 29. Let R be a commutative ring. If M and N are free R-modules, will the R-module $\operatorname{Hom}_R(M, N)$ be free? If $\operatorname{Hom}_R(M, N)$ is a free R-module, must M and N be free?
- 30. Let R be a commutative ring, and let A, B, M be R-modules. Prove isomorphisms of R-modules:
 - (a) $\operatorname{Hom}_R(A \oplus B, M) \cong \operatorname{Hom}_R(A, M) \oplus \operatorname{Hom}_R(B, M)$
 - (b) $\operatorname{Hom}_R(M, A \oplus B) \cong \operatorname{Hom}_R(M, A) \oplus \operatorname{Hom}_R(M, B)$
- 31. (Coproducts of families). Prove that the direct sum of R-modules $\bigoplus_{i \in I} M_i$, along with the inclusions $f_i : M_i \to \bigoplus_{i \in I} M_i$, satisfies the following universal property: whenever there is a family of maps $\{g_i : M_i \to Z \mid i \in I\}$ there is a unique map u making the following diagrams commute:

Explain why this universal property can be taken as the definition of the direct sum of R-modules.

- 32. State the definition of a category, and the definition of a covariant functor.
- 33. Let \mathcal{C} be a category. Prove that if $X \in ob(\mathcal{C})$, then the identity morphism id_X is unique.
- 34. Prove that if $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is an isomorphism, then its inverse f^{-1} is unique.
- 35. (a) Prove that in the category of sets, a map is monic iff it is injective, and epic iff it is surjective.
 - (b) Prove that in any category the composition of monomorphisms (respectively, epimorphisms, or isomorphisms) is a monomorphisms (respectively, an epimorphism, or isomorphism).
 - (c) Prove that isomorphisms are both monic and epic.
- 36. Prove or disprove the following statements.
 - (a) If $f : A \to B$ is a monomorphism (respectively, epimorphism) in a category C, then the image of f under any (covariant) functor $C \to D$ must be a monomorphism (respectively, epimorphism) in D.
 - (b) If $0 \to A \to B \to C \to 0$ is a short exact sequence in the category of *R*-modules, then its image under any (covariant) functor $R-Mod \to R-Mod$ must be an exact sequence.

- 37. Let <u>Grp</u> be the category of groups and group homomorphisms. Let Z be the map $Z : \underline{\operatorname{Grp}} \to \underline{\operatorname{Grp}}$ that maps a group G to its centre $Z(G) = \{a \in G \mid ag = ga \; \forall g \in G\}$. Show that Z cannot be made into a functor by defining it to take a map of groups $f : G \to H$ to the restriction $f|_{Z(G)}$ of f to Z(G), since f(Z(G)) may not be contained in Z(H).
- 38. Let R be a ring. Consider the map on the objects of R-<u>Mod</u> that takes and R-module M to the submodule $\operatorname{ann}(R)$, and takes a morphism of R-modules $f: M \to N$ to its restriction $f|_{\operatorname{ann}(R)}$ to the submodule $\operatorname{ann}(R) \subseteq M$. Does this give a well-defined functor R-<u>Mod</u> $\to R$ -<u>Mod</u>?
- 39. Let R be an integral domain. Prove or disprove: The map of R-modules that takes an R-module M to its R-submodule $\operatorname{Tor}(M)$ and takes a map $f: M \to N$ to its restriction $f|_{\operatorname{Tor}(M)}$ defines a covariant functor $R-\operatorname{Mod} \to R-\operatorname{Mod}$.
- 40. Let R be a ring. Define a functor on the category R-Mod that takes an R-module M to the R-module $M \oplus M$. Verify that your construction is functorial.
- 41. An object I in a category C is called *initial* if for every object X in C there is a unique morphism $I \to X$ in C. An object T is called terminal if for every object X in C there is a unique morphism $X \to T$.
 - (a) Show that if C has an initial object I, then this object is unique up to unique isomorphism. Similarly show that terminal objects are unique up to unique isomorphism.
 - (b) Show that the empty set is initial in <u>Set</u>, and that the singleton set is terminal in <u>Set</u>.
 - (c) Find an example of a category with no initial or terminal object.
 - (d) Show that in R-<u>Mod</u>, the zero module is both initial and terminal.
 - (e) Identify an initial object and a terminal object in the category of rings (with unit) and (unitpreserving) ring maps.

(b)

42. Let R be a ring and M a fixed R-module. Verify that the following maps each define a functor of categories. Explain how to define the functor on morphisms, determine whether it is covariant or contravariant, and verify that the map is functorial.

(a)

$$\operatorname{Hom}_{R}(M, -) : R - \underline{\operatorname{Mod}} \longrightarrow \underline{\operatorname{Ab}} \qquad \qquad \operatorname{Hom}_{R}(-, M) : R - \underline{\operatorname{Mod}} \longrightarrow \underline{\operatorname{Ab}} \\ N \longmapsto \operatorname{Hom}_{R}(M, N) \qquad \qquad N \longmapsto \operatorname{Hom}_{R}(N, M)$$

- 43. There is a single nonzero map of abelian groups $f : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$, and a single nonzero map $g : \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$. Compute the images of these maps under the functors
 - (a) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, -)$ (b) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z}, -)$ (c) $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z}/2\mathbb{Z})$ (d) $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z}/4\mathbb{Z})$

This means, express the image of each abelian group as a cyclic abelian group, and determine how the induced maps f_*, f^*, g_*, g^* act on the generator of these cyclic groups.

- 44. Find two non-isomorphic extensions of the abelian groups $\mathbb{Z}/2\mathbb{Z}$ by $\mathbb{Z}/6\mathbb{Z}$.
- 45. The rows of the following diagram are exact. Prove that if m and p are surjective and q is a injective, then n is surjective.

- 46. An *R*-submodule *N* of an *R*-module *M* has a *direct complement P* if $M \cong N \oplus P$ for *P* an *R*-submodule.
 - (a) Show that the \mathbb{Z} -submodule $2\mathbb{Z} \subseteq \mathbb{Z}$ does not have a direct complement.
 - (b) Show that the \mathbb{Z} -submodule (3) $\subseteq \mathbb{Z}/9\mathbb{Z}$ does not have a direct complement.
 - (c) Show that the \mathbb{Z} -submodule (3) $\subseteq \mathbb{Z}/6\mathbb{Z}$ does have a direct complement.
 - (d) Let V be the the $\mathbb{Q}[x]$ -module where x acts by the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Show that $U = \operatorname{span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ is a submodule of V with no direct complement.
 - (e) Show that the $\mathbb{Q}[x]$ -submodule $(x) \subseteq \mathbb{Q}[x]/(x^3)$ does not have a direct complement.
 - (f) Show that every linear subspace of a vector space has a direct complement.
- 47. Re-interpret each of the parts of Problem (46) in terms of the splitting or non-splitting of a short exact sequence.
- 48. Let $0 \to A \to B \to C \to 0$ be an exact sequence of *R*-modules.
 - (a) Show that if B is torsion, so are A and C.
 - (b) Prove or find a counterexample: If A and C are torsion, then so is B.
 - (c) Show by example that if B is torsion-free, then A is torsion-free, but C need not be.
 - (d) Prove or find a counterexample: If A and C are torsion-free, then so is B.
- 49. Let M be a right R-module, and N a left R-module.
 - (a) Describe an explicit construction of the tensor product $M \otimes_R N$ as a quotient of abelian groups.
 - (b) State the universal property of the tensor product.
 - (c) Verify that the explicit construction satisfies the universal property.
- 50. Compute the following tensor products of abelian groups:

 $\begin{aligned} & (\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z} & (\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q} & (\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z}) & (\mathbb{Q}/\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q} \\ & (\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) & (m,n \text{ coprime}) & (\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n^2\mathbb{Z}) \end{aligned}$