Reading: Dummit-Foote Ch 10.1.
Please review the Math 122 Course Information posted on our webpage:
http://web.stanford.edu/~jchw/2018Math122.

Summary of definitions and main results

Definitions we've covered: left R-module, right R-module, R-submodule, endomorphism, free R-module of rank n, annihilator of a submodule, annihilator of a (right) ideal.

Main results: Two equivalent definitions of an R-module; the submodule criterion, equivalence of vector spaces over a field \mathbb{F} and \mathbb{F}-modules; equivalence of abelian groups and \mathbb{Z}-modules; if I annihilates an R-module M then M inherits a (R / I)-module structure; structure of an $\mathbb{F}[x]$-module for a field \mathbb{F}.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded), however, you're encouraged to work out their solutions!

1. State the definition / axioms for a ring R (which we assume has unit 1).
2. In class we gave the definition of a left R-module. Formulate the definition of a right R-module M.
3. Let R be a ring with 1 and M a left $R-$ module. Prove the following:
(a) $0 m=0$ for all m in M.
(c) If $r \in R$ has a left inverse, and $m \in M$, then $r m=0$ only if $m=0$.
4. Show that if R is a commutative ring, then a left R-module structure on an abelian group M also defines a right R-module on M and vice versa. Is this true for noncommutative rings R ?
5. (Restriction of scalars). Let M be an R-module, and let S be any subring of R. Explain how the R-module structure on M also gives M the structure of an S-module. This operation is called restriction of scalars from R to the subring S.
6. Verify that the axioms for a vector space over a field \mathbb{F} are equivalent to the axioms for an \mathbb{F}-module.
7. Verify that the axioms for an abelian group M are equivalent to the axioms for a \mathbb{Z}-module structure on M. How does an integer n act on $m \in M$?
8. Let \mathbb{F} be a field, and x a formal variable. Prove that modules V over the polynomial ring $\mathbb{F}[x]$ are precisely \mathbb{F}-vector spaces V with a choice of linear map $T: V \rightarrow V$. In Assignment Problem 4 we will see that different maps T give different $\mathbb{F}[x]$-module structures on V.
9. Prove the submodule criterion: If M is a left R-module and N a subset of M, then N is a left $R-$ submodule if and only if

$$
\text { (i) } N \neq \varnothing \quad \text { and } \quad \text { (ii) } \quad x+r y \in N \text { for all } x, y \in N \text { and all } r \in R \text {. }
$$

10. Consider R as a module over itself. Prove that the R-submodules of the module R are precisely the left ideals I of R.
11. Let R^{n} be the free module of rank n over R. Prove that the following are submodules:
(a) $I_{1} \times I_{2} \times \cdots \times I_{n}$, with I_{i} a left ideal of R.
(b) The $i^{\text {th }}$ direct summand R of R^{n}.
(c) $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{n} \mid a_{1}+a_{2}+\cdots+a_{n}=0\right\}$.
12. Let M be a left R-module. Show that the intersection of a (nonempty) collection of submodules is a submodule.
13. (a) Let M be an R-module and N an R-submodule. Prove that the annihilator ann (N) is a 2-sided ideal of R.
(b) Let M be an R-module and I a right ideal of R. Show that ann (I) is an R-submodule of M.
(c) Compute the annihilator of the ideal $3 \mathbb{Z} \subseteq \mathbb{Z}$ in the \mathbb{Z}-module $\mathbb{Z} / 9 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 15 \mathbb{Z}$.
14. (a) For p prime, an elementary abelian p-group is an abelian group G where $p g=0$ for all $g \in G$. Prove that an elementary abelian p-group is a $\mathbb{Z} / p \mathbb{Z}$-module, equivalently, an \mathbb{F}_{p}-vector space.
(b) Conversely, show that any $\mathbb{Z} / p \mathbb{Z}$-module M must satisfy $p m=0$ for all $m \in M$, in other words, the underlying abelian group M must be an elementary abelian p-group.
15. Let M be a \mathbb{Z}-module. Fix an integer $n>1$. Under what conditions on M does the action of \mathbb{Z} on M induce an action of $\mathbb{Z} / n \mathbb{Z}$ on M ?
16. A student makes the following claim: "Since $\mathbb{Z} / 2 \mathbb{Z}$ is a subring of $\mathbb{Z} / 4 \mathbb{Z}$, we can let $\mathbb{Z} / 2 \mathbb{Z}$ act by left multiplication to give $\mathbb{Z} / 4 \mathbb{Z}$ the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-module. Then $\mathbb{Z} / 4 \mathbb{Z}$ is a $\mathbb{Z} / 2 \mathbb{Z}$-vector space with 4 elements, so it must be isomorphic as a vector space to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$." Prove that $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ are not even isomorphic as abelian groups, and find the flaw in this argument.
17. Let M be an R-module, and consider $\operatorname{Tor}(M)$ as defined in Assignment Question 2.
(a) Find $\operatorname{Tor}(\mathbb{Z} / 7 \mathbb{Z})$ if $\mathbb{Z} / 7 \mathbb{Z}$ is consider a module over (i) \mathbb{Z}, (ii) $\mathbb{Z} / 7 \mathbb{Z}$, or (iii) $\mathbb{Z} / 21 \mathbb{Z}$.
(b) Show that if R has zero divisors, then every nonzero R-module has nonzero torsion elements.
18. (Group theory review) State the structure theorem for finitely generated abelian groups.

19. (Linear algebra review)

(a) Define the following terms (as they apply to finite dimensional vector spaces)

- vector space over \mathbb{F}; vector subspace
- linear dependence and linear independence of a set of vectors
- spanning set of vectors for a vector subspace
- basis and dimension of a vector subspace
- the direct sum of vector subspaces
(b) If you have not already seen proofs that
- linearly independent sets of vectors in a finite dimensional vector space V can be extended to a basis, and
- all bases for V have the same cardinality so $\operatorname{dim}(V)$ is well-defined
then take a look at Dummit-Foote Chapter 11.1.
(c) Let T be a linear transformation on a finite-dimensional \mathbb{F}-vector space V. Define an eigenvector of T and its associated eigenvalue. Find all eigenvectors and eigenvalues of the following matrices, over \mathbb{R} and over \mathbb{C}.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
3 & 4 \\
4 & 3
\end{array}\right] \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

(d) If T has a basis of eigenvectors, then such as basis is called an eigenbasis. What can you say about the structure of a matrix with an eigenbasis, and why is this important? Which of the above four matrices have eigenbases over \mathbb{R}, or over \mathbb{C} ?

Assignment Questions

The following questions should be handed in. Fully justify your solutions.

1. Let M be an abelian group (with addition), and R a ring.
(a) Define an endomorphism of M, and show that the set of endomorphisms $\operatorname{End}(M)$ of M form a ring under composition and pointwise addition.
(b) Prove that a left R-module structure on M is equivalent to the data of a homomorphisms of rings $R \rightarrow \operatorname{End}(M)$. Use this result to formulate an alternative definition of a left R-module.
(c) What should the analogous definition be for right R-modules?
(d) We have another name for the kernel of the map $R \rightarrow \operatorname{End}(M)$. What is it?
(e) Let M be an R-module, and $\phi: S \rightarrow R$ a homomorphism of rings. Show how the map ϕ can be used to define an S-module structure on M. Explain why restriction of scalars is a special case of this construction. (Warm up Problem 5.)
2. An element m in an R-module M is called a torsion element if $r m=0$ for some nonzero $r \in R$. The set of torsion elements is denoted

$$
\operatorname{Tor}(M):=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\}
$$

Prove that if R is an integral domain, then $\operatorname{Tor}(M)$ is submodule of M.
Remark: For commutative rings R, some sources only define $\operatorname{Tor}(M)$ with respect to elements $r \in R$ that are not zero divisors.
3. For each of the following statements, prove that equality holds or find a counterexample. If equality does not hold in the conclusion of the statement, then determine whether you can prove containment of sets in one direction. Let M be an R-module, I a (right) ideal of R, and N a R-submodule.
(a) If $\operatorname{ann}(N)=I$, then $\operatorname{ann}(I)=N$.
(b) If $\operatorname{ann}(I)=N$, then $\operatorname{ann}(N)=I$.
4. Let \mathbb{F} be a field. Let V be a module over the polynomial ring $\mathbb{F}[x]$. For each of the following, classify all submodules of V.
(a) $V=\mathbb{F}^{2}$, and x acts by scalar multiplication by 2 .
(b) $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{2}$, and x acts by rotation by $\frac{\pi}{2}$.
(c) $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{2}$, and x acts by a matrix which has a basis of eigenvectors v_{1} and v_{2} with distinct eigenvalues λ_{1} and λ_{2}, respectively.
(d) $V=\mathbb{F}[x]$, and x acts by multiplication by x as usual.
(e) $V=\mathbb{F}[x] /\left(x^{2}\right)$, and x acts by multiplication by x as usual.

