
Math 122 Homework #2 Due: Friday 13 April 2018

Reading: Dummit–Foote Ch 10.2, 11.3.

Summary of definitions and main results

Definitions we’ve covered: Homomorphism of R–modules, isomorphism of R–modules, kernel, image,
HomR(M,N), EndR(M), quotient of R–modules, sum of R–submodules.

Main results: R–linearity criterion for maps, kernels and images are R–submodules, for R commutative
HomR(M,N) is an R–module, EndR(M) is a ring, factor theorem, four isomorphism theorems.

Warm-Up Questions

The “warm-up” questions do not need to be submitted (and won’t be graded).

1. Find an example of an R-module M that is isomorphic as R–modules to one of its proper submodules.

2. We saw that a R–module structure on M can also be defined by a homomorphism of rings R→ EndZ(M).
From this perspective, give an equivalent definition of theR–linear endomorphisms EndR(M) ⊆ EndZ(M).

3. Let M be an R–module, and suppose that I ⊂ R is a two-sided ideal that annihilates M . Prove that the
action of R on M factors through an action of R/I on M by (r mod I)m := rm for r ∈ R and m ∈M .
This means checking

(i) the action is well-defined: if r and s represent the same coset modulo I, then rm = sm for all
m ∈M ,

(ii) the action satisfies the axioms of an R–module structure.

4. (a) Prove the R–linearity criterion: φ : M → N is an R–module map if and only if

φ(rm+ n) = rφ(m) + φ(n) for all m,n ∈M and r ∈ R.

(b) Prove that the composition of R–module homomorphisms is again an R–module homomorphism.

(c) Let φ : M → N be an R–module homomorphism. Show that ker(φ) is an R–submodule of M , and
that im(φ) is an R–submodule of N .

(d) Show that if a map of R–modules φ : M → N is invertible as a map of sets, then its inverse φ−1 is
also R–linear, and an isomorphism of R–modules N →M .

(e) Show that a homomorphism of R–modules φ is injective if and only if ker(φ) = {0}.

5. (a) Let M and N be R–modules. Show that every R–module map M → N is also a group homomor-
phism of the underlying abelian groups M and N .

(b) Show that if R is a field, then R–module maps are precisely linear transformations of vector spaces.

(c) Show that if R = Z, then R–module maps are precisely group homomorphisms.

(d) Show by example that a homomorphism of the underlying abelian groups M and N need not be a
homomorphism of R–modules.

(e) Now let M = N . Show that the set EndZ(M) and the set EndR(M) may not be equal.

6. Let R be a ring. Its opposite ring Rop is a ring with the same elements and addition rule, but multipli-
cation is performed in the opposite order. Specifically, the opposite ring of (R,+, ·) is a ring (Rop,+, ∗)
where a ∗ b := b · a.

(a) Show that if R is commutative, R = Rop.

(b) Show that a left R–module structure on an abelian group M is equivalent to a right Rop–module
structure on M .
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7. Let φ : M → N be a map of R–modules. Show that φ(Tor(M)) ⊆ Tor(N).

8. Consider R as a module over itself.

(a) Show by example that not every map of R–modules R→ R is a ring homomorphism.

(b) Show by example that not every ring homomorphism is an R–module homomorphism.

(c) Suppose that φ is both a ring map and a map of R–modules. What must φ be?

9. (a) For R–modules M and N , prove that HomR(M,N) is an abelian group, and EndR(M) is a ring.

(b) For a commutative ring R, what is the ring EndR(R)?

(c) When R is commutative, show that HomR(M,N) is an R–module. What if R is not commutative?

(d) Let M be a right R–module. Prove that HomZ(M,R) is a left R–module. What if M is a left
R–module?

10. (a) Let M be an R–module. For which ring elements r ∈ R will the map m 7→ rm define an R–module
homomorphism on M?

(b) Show that if R is commutative then there is a natural map of rings R→ EndR(M).

(c) Show by example that the map R→ EndR(M) may or may not be injective.

11. State and sketch proofs of the four isomorphism theorems for modules (Section 10.2 Theorem 4.)

12. Show that the rank-nullity theorem for linear transformations of vector spaces is a consequence of the
first isomorphism theorem for modules.

13. Let Q[x, y] denote polynomials in (commuting) indeterminates x and y over Q. Use the isomorphism
theorems to prove the following isomorphisms of Q[y]–modules.

(a) Q[x, y]/(x) ∼= Q[y].

(b) Let p(x, y) be a polynomial in x and y. Then Q[x, y]/
(
x, p(x, y)

)
∼= Q[y]/

(
p(0, y)

)
.

(c) Let q(y) be a polynomial in y. Then Q[x, y]/
(
x− q(y)

)
∼= Q[y].

14. Let R be a ring. A left ideal I in R is maximal if the only left ideals in R containing I are I and R. Use
the fourth isomorphism theorem to show that R/I is simple (it has no proper nontrivial submodules).

15. (Group theory review) Consider the abelian group Q/Z.

(a) Show that every element of Q/Z is torsion.

(b) Show that Q/Z is divisible: for every a ∈ Q/Z and n ∈ Z, there is an element b ∈ Q/Z with nb = a.

(c) Show that Q/Z is not finitely generated.

16. (Ring theory review) Classify all ideals of the ring Z.

17. (Linear algebra review) Let V,W be vector spaces over a field F of dimension n and m, respectively.

(a) Show that T : V → W is a linear transformation if and only if it can be represented by an m × n
matrix with respect to a choice of basis. Show that matrix multiplication corresponds to composition
of functions.

(b) Explain the principle of change of basis. Show that re-expressing a linear map as a matrix in a
different basis corresponds to conjugation of matrices. Show that similar matrices represent the
same linear map in different bases.

18. (Linear algebra review)

(a) Let V,W be vector spaces over a field F and suppose that V has basis B = {b1, b2, . . . , bn}. Show
that any maps of sets ϕ : B → W can be extended to a linear map T : V → W , and that the map
T is uniquely determined by the map ϕ.

(b) Let U, V,W be vector spaces over a field F. Let φ : U → V be an injective linear map, and let
ψ : V →W be a surjective linear map. Prove that both φ and ψ have one-sided inverses.
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Assignment Questions

The following questions should be handed in.

1. (Group theory review) Suppose m,n ≥ 2 are integers.

(a) Prove that there is an injective map of abelian groups Z/mZ→ Z/nZ if and only if m|n.

(b) Prove that if this map exists, it is unique up to pre-composing with an automorphism of Z/mZ.
This means if g, g′ : Z/mZ→ Z/nZ are injective maps, then g′ = g◦f for some f : Z/mZ→ Z/mZ.
Conclude in particular that the image of an injective map is a uniquely determined subset of Z/nZ.

(c) HomZ(Z/mZ,Z/nZ) is an abelian group under pointwise addition of maps. Compute this group
(as a product of cyclic groups, in terms of the classification of finitely generated abelian groups).

2. Let R be a commutative ring and N an R–module.

(a) Prove that there is an isomorphism of left R–modules N ∼= HomR(R,N).

(b) Let n be a positive integer. Compute HomR(Rn, N).

(c) In a sentence, explain whether these same arguments work for HomR(N,R).

3. If R is a commutative ring, then for any positive integer n, EndR(Rn) is isomorphic (as a ring) to the
ring Mn×n(R) of n×n matrices with entries in R. Find and prove the appropriate generalized statement
if R is any (not necessarily commutative) ring. (Your proof should specialize to proving an isomorphism
of rings EndR(Rn) ∼= Mn×n(R) in the case that R is commutative.) Hint: Warm-Up Problem #6.

4. For R–modules M,N,P , there is a composition map HomR(M,N) × HomR(N,P ) −→ HomR(M,P )
given by (f, g) 7−→ g ◦ f .

(a) When R is commutative, is this map a homomorphism of R–modules?

(b) Give an example of a ring R and distinct R–modules M,N,P such that this map is surjective, and
an example where this map is not surjective.

5. Let k be a field, and let V be a finite dimensional k-vector space. Define the dual space of V by

V ∗ := Homk(V, k).

Recall that V ∗ has the structure of a k-vector space under pointwise addition and scalar multiplication.

Use the notation AT or vT to denote the transpose of a matrix A or column vector v. You may use the
identity (AB)T = BTAT without proof.

(a) Given a choice of basis B = {b1, . . . , bn} for V , define a symmetric bilinear form

(−,−) : V × V −→ k

on V by the condition

(bi, bj) =

{
1, i = j
0, i 6= j.

Let v, u ∈ V . Show that this definition completely determines the value of (v, u), and moreover
that (v, u) is equal to the dot product vTu of v and u when they are expressed as column vectors
with respect to the basis B.

(b) For each i = 1, . . . , n, define the map bi : V → k by

bi(v) := (bi, v).

Check that bi is a functional, ie, a k–linear map V → k, and show moreover that the map bi 7→ bi

extends to a k-linear map

V −→ V ∗

w 7−→
[
v 7→ (w, v)

]
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(c) Show that the functionals b1, . . . , bn are linearly independent and span V ∗, and therefore form a
basis B∗ (called the dual basis to B). Conclude that a choice of basis for V defines an isomorphism
of vector spaces V ∼= V ∗ .

(d) Show that if A : V → W is a linear map given by a matrix with respect to orthonormal bases BV

and BW . Show that
(w,Av)W = (ATw, v)V .

Hint: Use the formula (u, u′) = uTu′. This should be a one-line solution.

(e) A linear map φ : V →W induces a map φ∗ : W ∗ → V ∗ by precomposition:

W ∗ −→ V ∗

[f : W → k] 7−→ [f ◦ φ : V → k]

Show that if a linear map V →W given by a matrix A with respect to bases BV and BW , then the
induced map W ∗ → V ∗ is given by the matrix AT with respect to the dual bases B∗V and B∗W .

(f) Although V and V ∗ are isomorphic as abstract vector spaces, they are not naturally isomorphic
in the sense that any isomorphism involves a choice of basis or choice of nondegenerate symmetric
bilinear form on V . Show, in contrast, that V and (V ∗)∗ are naturally isomorphic, by constructing
an isomorphism that does not require a choice of basis or a choice of form.

6. Bonus (Optional).

(a) Let V be a vector space over a field k, and let U ⊆ V be a subspace. Show that there exists a
subspace W ⊆ V so that V = U ⊕W . The subspace W is called a direct complement of U in V .

(b) Show that, if U is strictly smaller dimension than V , then its direct complement is not uniquely
defined. In other words, U ⊕W = U ⊕W ′ does not imply that W = W ′ as subspaces of V .

(c) Show direct complements need not always exist in free abelian groups1: Let M = Zn for some n
and let N ⊂ M be a Z–submodule. Show by example that there may not exist a Z–submodule P
such that M = N ⊕ P . If (at least one) direct complement P of N exists, let’s call N a splittable
submodule of M .

(d) Let V be a vector space, and let U,W ⊂ V be subspaces such that U ∩W = 0. Show that we can
find a direct complement of U in V that contains W .

(e) Determine whether or not the same property holds for splittable submodules of free abelian groups.
In other words, suppose that N,P are splittable Z–submodules of M = Zn and that N ∩ P = 0.
Either prove that N must have a direct complement in Zn containing P , or give a counterexample.

1The direct sum of two abelian groups N ⊕ P turns out to be the same as the direct product N × P , and is analogous
to the direct sum of vector spaces. You can review the notes from Fall 2017 Math 120, http://web.stanford.edu/~mkemeny/
120lectures/L6.pdf.
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