Reading: Dummit–Foote Ch 10.2, 11.3.

Summary of definitions and main results

Definitions we've covered: Homomorphism of R-modules, isomorphism of R-modules, kernel, image, Hom_R(M, N), End_R(M), quotient of R-modules, sum of R-submodules.

Main results: *R*-linearity criterion for maps, kernels and images are *R*-submodules, for *R* commutative $\operatorname{Hom}_R(M, N)$ is an *R*-module, $\operatorname{End}_R(M)$ is a ring, factor theorem, four isomorphism theorems.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded).

- 1. Find an example of an R-module M that is isomorphic as R-modules to one of its proper submodules.
- 2. We saw that a R-module structure on M can also be defined by a homomorphism of rings $R \to \operatorname{End}_{\mathbb{Z}}(M)$. From this perspective, give an equivalent definition of the R-linear endomorphisms $\operatorname{End}_R(M) \subseteq \operatorname{End}_{\mathbb{Z}}(M)$.
- 3. Let M be an R-module, and suppose that $I \subset R$ is a two-sided ideal that annihilates M. Prove that the action of R on M factors through an action of R/I on M by $(r \mod I)m := rm$ for $r \in R$ and $m \in M$. This means checking
 - (i) the action is well-defined: if r and s represent the same coset modulo I, then rm = sm for all $m \in M$,
 - (ii) the action satisfies the axioms of an R-module structure.
- 4. (a) Prove the *R*-linearity criterion: $\phi: M \to N$ is an *R*-module map if and only if

 $\phi(rm+n) = r\phi(m) + \phi(n)$ for all $m, n \in M$ and $r \in R$.

- (b) Prove that the composition of R-module homomorphisms is again an R-module homomorphism.
- (c) Let $\phi: M \to N$ be an *R*-module homomorphism. Show that ker(ϕ) is an *R*-submodule of *M*, and that im(ϕ) is an *R*-submodule of *N*.
- (d) Show that if a map of R-modules $\phi: M \to N$ is invertible as a map of sets, then its inverse ϕ^{-1} is also R-linear, and an isomorphism of R-modules $N \to M$.
- (e) Show that a homomorphism of *R*-modules ϕ is injective if and only if ker(ϕ) = {0}.
- 5. (a) Let M and N be R-modules. Show that every R-module map $M \to N$ is also a group homomorphism of the underlying abelian groups M and N.
 - (b) Show that if R is a field, then R-module maps are precisely linear transformations of vector spaces.
 - (c) Show that if $R = \mathbb{Z}$, then *R*-module maps are precisely group homomorphisms.
 - (d) Show by example that a homomorphism of the underlying abelian groups M and N need not be a homomorphism of R-modules.
 - (e) Now let M = N. Show that the set $\operatorname{End}_{\mathbb{Z}}(M)$ and the set $\operatorname{End}_{\mathbb{R}}(M)$ may not be equal.
- 6. Let R be a ring. Its opposite ring R^{op} is a ring with the same elements and addition rule, but multiplication is performed in the opposite order. Specifically, the opposite ring of $(R, +, \cdot)$ is a ring $(R^{\text{op}}, +, *)$ where $a * b := b \cdot a$.
 - (a) Show that if R is commutative, $R = R^{\text{op}}$.
 - (b) Show that a left R-module structure on an abelian group M is equivalent to a right R^{op} -module structure on M.

- 7. Let $\phi: M \to N$ be a map of *R*-modules. Show that $\phi(\operatorname{Tor}(M)) \subseteq \operatorname{Tor}(N)$.
- 8. Consider R as a module over itself.
 - (a) Show by example that not every map of R-modules $R \to R$ is a ring homomorphism.
 - (b) Show by example that not every ring homomorphism is an R-module homomorphism.
 - (c) Suppose that ϕ is both a ring map and a map of *R*-modules. What must ϕ be?
- 9. (a) For *R*-modules *M* and *N*, prove that $\operatorname{Hom}_R(M, N)$ is an abelian group, and $\operatorname{End}_R(M)$ is a ring.
 - (b) For a commutative ring R, what is the ring $\operatorname{End}_R(R)$?
 - (c) When R is commutative, show that $\operatorname{Hom}_R(M, N)$ is an R-module. What if R is not commutative?
 - (d) Let M be a right R-module. Prove that $\operatorname{Hom}_{\mathbb{Z}}(M, R)$ is a left R-module. What if M is a left R-module?
- 10. (a) Let M be an R-module. For which ring elements $r \in R$ will the map $m \mapsto rm$ define an R-module homomorphism on M?
 - (b) Show that if R is commutative then there is a natural map of rings $R \to \operatorname{End}_R(M)$.
 - (c) Show by example that the map $R \to \operatorname{End}_R(M)$ may or may not be injective.
- 11. State and sketch proofs of the four isomorphism theorems for modules (Section 10.2 Theorem 4.)
- 12. Show that the rank-nullity theorem for linear transformations of vector spaces is a consequence of the first isomorphism theorem for modules.
- 13. Let $\mathbb{Q}[x, y]$ denote polynomials in (commuting) indeterminates x and y over \mathbb{Q} . Use the isomorphism theorems to prove the following isomorphisms of $\mathbb{Q}[y]$ -modules.
 - (a) $\mathbb{Q}[x,y]/(x) \cong \mathbb{Q}[y].$
 - (b) Let p(x,y) be a polynomial in x and y. Then $\mathbb{Q}[x,y]/(x,p(x,y)) \cong \mathbb{Q}[y]/(p(0,y))$.
 - (c) Let q(y) be a polynomial in y. Then $\mathbb{Q}[x,y]/(x-q(y)) \cong \mathbb{Q}[y]$.
- 14. Let R be a ring. A left ideal I in R is maximal if the only left ideals in R containing I are I and R. Use the fourth isomorphism theorem to show that R/I is simple (it has no proper nontrivial submodules).
- 15. (Group theory review) Consider the abelian group \mathbb{Q}/\mathbb{Z} .
 - (a) Show that every element of \mathbb{Q}/\mathbb{Z} is torsion.
 - (b) Show that \mathbb{Q}/\mathbb{Z} is *divisible*: for every $a \in \mathbb{Q}/\mathbb{Z}$ and $n \in \mathbb{Z}$, there is an element $b \in \mathbb{Q}/\mathbb{Z}$ with nb = a.
 - (c) Show that \mathbb{Q}/\mathbb{Z} is not finitely generated.
- 16. (Ring theory review) Classify all ideals of the ring \mathbb{Z} .
- 17. (Linear algebra review) Let V, W be vector spaces over a field \mathbb{F} of dimension n and m, respectively.
 - (a) Show that $T: V \to W$ is a linear transformation if and only if it can be represented by an $m \times n$ matrix with respect to a choice of basis. Show that matrix multiplication corresponds to composition of functions.
 - (b) Explain the principle of *change of basis*. Show that re-expressing a linear map as a matrix in a different basis corresponds to conjugation of matrices. Show that *similar* matrices represent the same linear map in different bases.
- 18. (Linear algebra review)
 - (a) Let V, W be vector spaces over a field \mathbb{F} and suppose that V has basis $B = \{b_1, b_2, \ldots, b_n\}$. Show that any maps of sets $\varphi : B \to W$ can be extended to a linear map $T : V \to W$, and that the map T is uniquely determined by the map φ .
 - (b) Let U, V, W be vector spaces over a field \mathbb{F} . Let $\phi : U \to V$ be an injective linear map, and let $\psi : V \to W$ be a surjective linear map. Prove that both ϕ and ψ have one-sided inverses.

Math 122

Assignment Questions

The following questions should be handed in.

- 1. (Group theory review) Suppose $m, n \ge 2$ are integers.
 - (a) Prove that there is an injective map of abelian groups $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ if and only if m|n.
 - (b) Prove that if this map exists, it is unique up to pre-composing with an automorphism of $\mathbb{Z}/m\mathbb{Z}$. This means if $g, g' : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ are injective maps, then $g' = g \circ f$ for some $f : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$. Conclude in particular that the image of an injective map is a uniquely determined subset of $\mathbb{Z}/n\mathbb{Z}$.
 - (c) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ is an abelian group under pointwise addition of maps. Compute this group (as a product of cyclic groups, in terms of the classification of finitely generated abelian groups).
- 2. Let R be a commutative ring and N an R-module.
 - (a) Prove that there is an isomorphism of left R-modules $N \cong \operatorname{Hom}_R(R, N)$.
 - (b) Let n be a positive integer. Compute $\operatorname{Hom}_R(\mathbb{R}^n, N)$.
 - (c) In a sentence, explain whether these same arguments work for $\operatorname{Hom}_R(N, R)$.
- 3. If R is a commutative ring, then for any positive integer n, $\operatorname{End}_R(R^n)$ is isomorphic (as a ring) to the ring $M_{n \times n}(R)$ of $n \times n$ matrices with entries in R. Find and prove the appropriate generalized statement if R is any (not necessarily commutative) ring. (Your proof should specialize to proving an isomorphism of rings $\operatorname{End}_R(R^n) \cong M_{n \times n}(R)$ in the case that R is commutative.) Hint: Warm-Up Problem #6.
- 4. For *R*-modules M, N, P, there is a composition map $\operatorname{Hom}_R(M, N) \times \operatorname{Hom}_R(N, P) \longrightarrow \operatorname{Hom}_R(M, P)$ given by $(f, g) \longmapsto g \circ f$.
 - (a) When R is commutative, is this map a homomorphism of R-modules?
 - (b) Give an example of a ring R and distinct R-modules M, N, P such that this map is surjective, and an example where this map is not surjective.
- 5. Let k be a field, and let V be a finite dimensional k-vector space. Define the dual space of V by

$$V^* := \operatorname{Hom}_k(V, k).$$

Recall that V^* has the structure of a k-vector space under pointwise addition and scalar multiplication. Use the notation A^T or v^T to denote the *transpose* of a matrix A or column vector v. You may use the identity $(AB)^T = B^T A^T$ without proof.

(a) Given a choice of basis $B = \{b_1, \ldots, b_n\}$ for V, define a symmetric bilinear form

$$(-,-): V \times V \longrightarrow k$$

on V by the condition

$$(b_i, b_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$

Let $v, u \in V$. Show that this definition completely determines the value of (v, u), and moreover that (v, u) is equal to the *dot product* $v^T u$ of v and u when they are expressed as column vectors with respect to the basis B.

(b) For each i = 1, ..., n, define the map $b^i : V \to k$ by

$$b^i(v) := (b_i, v).$$

Check that b^i is a *functional*, i.e., a k-linear map $V \to k$, and show moreover that the map $b_i \mapsto b^i$ extends to a k-linear map

$$\begin{array}{l} V \longrightarrow V^* \\ w \longmapsto \begin{bmatrix} v \mapsto (w,v) \end{bmatrix} \end{array}$$

- (c) Show that the functionals b^1, \ldots, b^n are linearly independent and span V^* , and therefore form a basis B^* (called the *dual basis* to *B*). Conclude that a choice of basis for *V* defines an isomorphism of vector spaces $V \cong V^*$.
- (d) Show that if $A: V \to W$ is a linear map given by a matrix with respect to orthonormal bases B_V and B_W . Show that

$$(w, Av)_W = (A^T w, v)_V$$

Hint: Use the formula $(u, u') = u^T u'$. This should be a one-line solution.

(e) A linear map $\phi: V \to W$ induces a map $\phi^*: W^* \to V^*$ by precomposition:

$$\begin{split} W^* \longrightarrow V^* \\ [f:W \to k] \longmapsto [f \circ \phi: V \to k] \end{split}$$

Show that if a linear map $V \to W$ given by a matrix A with respect to bases B_V and B_W , then the induced map $W^* \to V^*$ is given by the matrix A^T with respect to the dual bases B_V^* and B_W^* .

(f) Although V and V^* are isomorphic as abstract vector spaces, they are not *naturally isomorphic* in the sense that any isomorphism involves a choice of basis or choice of nondegenerate symmetric bilinear form on V. Show, in contrast, that V and $(V^*)^*$ are naturally isomorphic, by constructing an isomorphism that does not require a choice of basis or a choice of form.

6. Bonus (Optional).

- (a) Let V be a vector space over a field k, and let $U \subseteq V$ be a subspace. Show that there exists a subspace $W \subseteq V$ so that $V = U \oplus W$. The subspace W is called a *direct complement* of U in V.
- (b) Show that, if U is strictly smaller dimension than V, then its direct complement is not uniquely defined. In other words, $U \oplus W = U \oplus W'$ does not imply that W = W' as subspaces of V.
- (c) Show direct complements need not always exist in free abelian groups¹: Let $M = \mathbb{Z}^n$ for some n and let $N \subset M$ be a \mathbb{Z} -submodule. Show by example that there may not exist a \mathbb{Z} -submodule P such that $M = N \oplus P$. If (at least one) direct complement P of N exists, let's call N a *splittable* submodule of M.
- (d) Let V be a vector space, and let $U, W \subset V$ be subspaces such that $U \cap W = 0$. Show that we can find a direct complement of U in V that contains W.
- (e) Determine whether or not the same property holds for splittable submodules of free abelian groups. In other words, suppose that N, P are splittable \mathbb{Z} -submodules of $M = \mathbb{Z}^n$ and that $N \cap P = 0$. Either prove that N must have a direct complement in \mathbb{Z}^n containing P, or give a counterexample.

¹The direct sum of two abelian groups $N \oplus P$ turns out to be the same as the direct product $N \times P$, and is analogous to the direct sum of vector spaces. You can review the notes from Fall 2017 Math 120, http://web.stanford.edu/~mkemeny/ 120lectures/L6.pdf.