Reading: Dummit-Foote Ch 10.2, 11.3.

Summary of definitions and main results

Definitions we've covered: Homomorphism of R-modules, isomorphism of R-modules, kernel, image, $\operatorname{Hom}_{R}(M, N), \operatorname{End}_{R}(M)$, quotient of R-modules, sum of R-submodules.

Main results: $\quad R$-linearity criterion for maps, kernels and images are R-submodules, for R commutative $\operatorname{Hom}_{R}(M, N)$ is an R-module, $\operatorname{End}_{R}(M)$ is a ring, factor theorem, four isomorphism theorems.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded).

1. Find an example of an R-module M that is isomorphic as R-modules to one of its proper submodules.
2. We saw that a R-module structure on M can also be defined by a homomorphism of rings $R \rightarrow \operatorname{End}_{\mathbb{Z}}(M)$. From this perspective, give an equivalent definition of the R-linear endomorphisms $\operatorname{End}_{R}(M) \subseteq \operatorname{End}_{\mathbb{Z}}(M)$.
3. Let M be an R-module, and suppose that $I \subset R$ is a two-sided ideal that annihilates M. Prove that the action of R on M factors through an action of R / I on M by $(r \bmod I) m:=r m$ for $r \in R$ and $m \in M$. This means checking
(i) the action is well-defined: if r and s represent the same coset modulo I, then $r m=s m$ for all $m \in M$,
(ii) the action satisfies the axioms of an R-module structure.
4. (a) Prove the R-linearity criterion: $\phi: M \rightarrow N$ is an R-module map if and only if

$$
\phi(r m+n)=r \phi(m)+\phi(n) \quad \text { for all } m, n \in M \text { and } r \in R .
$$

(b) Prove that the composition of R-module homomorphisms is again an R-module homomorphism.
(c) Let $\phi: M \rightarrow N$ be an R-module homomorphism. Show that $\operatorname{ker}(\phi)$ is an R-submodule of M, and that $\operatorname{im}(\phi)$ is an R-submodule of N.
(d) Show that if a map of R-modules $\phi: M \rightarrow N$ is invertible as a map of sets, then its inverse ϕ^{-1} is also R-linear, and an isomorphism of $R-$ modules $N \rightarrow M$.
(e) Show that a homomorphism of R-modules ϕ is injective if and only if $\operatorname{ker}(\phi)=\{0\}$.
5. (a) Let M and N be R-modules. Show that every R-module map $M \rightarrow N$ is also a group homomorphism of the underlying abelian groups M and N.
(b) Show that if R is a field, then R-module maps are precisely linear transformations of vector spaces.
(c) Show that if $R=\mathbb{Z}$, then R-module maps are precisely group homomorphisms.
(d) Show by example that a homomorphism of the underlying abelian groups M and N need not be a homomorphism of R-modules.
(e) Now let $M=N$. Show that the set $\operatorname{End}_{\mathbb{Z}}(M)$ and the set $\operatorname{End}_{R}(M)$ may not be equal.
6. Let R be a ring. Its opposite ring R^{op} is a ring with the same elements and addition rule, but multiplication is performed in the opposite order. Specifically, the opposite ring of $(R,+, \cdot)$ is a ring $\left(R^{\mathrm{op}},+, *\right)$ where $a * b:=b \cdot a$.
(a) Show that if R is commutative, $R=R^{\text {op }}$.
(b) Show that a left R-module structure on an abelian group M is equivalent to a right $R^{\mathrm{op}}-$ module structure on M.
7. Let $\phi: M \rightarrow N$ be a map of $R-$ modules. Show that $\phi(\operatorname{Tor}(M)) \subseteq \operatorname{Tor}(N)$.
8. Consider R as a module over itself.
(a) Show by example that not every map of R-modules $R \rightarrow R$ is a ring homomorphism.
(b) Show by example that not every ring homomorphism is an R-module homomorphism.
(c) Suppose that ϕ is both a ring map and a map of R-modules. What must ϕ be?
9. (a) For R-modules M and N, prove that $\operatorname{Hom}_{R}(M, N)$ is an abelian group, and $\operatorname{End}(M)$ is a ring.
(b) For a commutative ring R, what is the $\operatorname{ring} \operatorname{End}_{R}(R)$?
(c) When R is commutative, show that $\operatorname{Hom}_{R}(M, N)$ is an R-module. What if R is not commutative?
(d) Let M be a right R-module. Prove that $\operatorname{Hom}_{\mathbb{Z}}(M, R)$ is a left R-module. What if M is a left R-module?
10. (a) Let M be an R-module. For which ring elements $r \in R$ will the map $m \mapsto r m$ define an R-module homomorphism on M ?
(b) Show that if R is commutative then there is a natural map of rings $R \rightarrow \operatorname{End}_{R}(M)$.
(c) Show by example that the map $R \rightarrow \operatorname{End}_{R}(M)$ may or may not be injective.
11. State and sketch proofs of the four isomorphism theorems for modules (Section 10.2 Theorem 4.)
12. Show that the rank-nullity theorem for linear transformations of vector spaces is a consequence of the first isomorphism theorem for modules.
13. Let $\mathbb{Q}[x, y]$ denote polynomials in (commuting) indeterminates x and y over \mathbb{Q}. Use the isomorphism theorems to prove the following isomorphisms of $\mathbb{Q}[y]$-modules.
(a) $\mathbb{Q}[x, y] /(x) \cong \mathbb{Q}[y]$.
(b) Let $p(x, y)$ be a polynomial in x and y. Then $\mathbb{Q}[x, y] /(x, p(x, y)) \cong \mathbb{Q}[y] /(p(0, y))$.
(c) Let $q(y)$ be a polynomial in y. Then $\mathbb{Q}[x, y] /(x-q(y)) \cong \mathbb{Q}[y]$.
14. Let R be a ring. A left ideal I in R is maximal if the only left ideals in R containing I are I and R. Use the fourth isomorphism theorem to show that R / I is simple (it has no proper nontrivial submodules).
15. (Group theory review) Consider the abelian group \mathbb{Q} / \mathbb{Z}.
(a) Show that every element of \mathbb{Q} / \mathbb{Z} is torsion.
(b) Show that \mathbb{Q} / \mathbb{Z} is divisible: for every $a \in \mathbb{Q} / \mathbb{Z}$ and $n \in \mathbb{Z}$, there is an element $b \in \mathbb{Q} / \mathbb{Z}$ with $n b=a$.
(c) Show that \mathbb{Q} / \mathbb{Z} is not finitely generated.
16. (Ring theory review) Classify all ideals of the ring \mathbb{Z}.
17. (Linear algebra review) Let V, W be vector spaces over a field \mathbb{F} of dimension n and m, respectively.
(a) Show that $T: V \rightarrow W$ is a linear transformation if and only if it can be represented by an $m \times n$ matrix with respect to a choice of basis. Show that matrix multiplication corresponds to composition of functions.
(b) Explain the principle of change of basis. Show that re-expressing a linear map as a matrix in a different basis corresponds to conjugation of matrices. Show that similar matrices represent the same linear map in different bases.

18. (Linear algebra review)

(a) Let V, W be vector spaces over a field \mathbb{F} and suppose that V has basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Show that any maps of sets $\varphi: B \rightarrow W$ can be extended to a linear map $T: V \rightarrow W$, and that the map T is uniquely determined by the map φ.
(b) Let U, V, W be vector spaces over a field \mathbb{F}. Let $\phi: U \rightarrow V$ be an injective linear map, and let $\psi: V \rightarrow W$ be a surjective linear map. Prove that both ϕ and ψ have one-sided inverses.

Assignment Questions

The following questions should be handed in.

1. (Group theory review) Suppose $m, n \geq 2$ are integers.
(a) Prove that there is an injective map of abelian groups $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ if and only if $m \mid n$.
(b) Prove that if this map exists, it is unique up to pre-composing with an automorphism of $\mathbb{Z} / m \mathbb{Z}$. This means if $g, g^{\prime}: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ are injective maps, then $g^{\prime}=g \circ f$ for some $f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$. Conclude in particular that the image of an injective map is a uniquely determined subset of $\mathbb{Z} / n \mathbb{Z}$.
(c) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ is an abelian group under pointwise addition of maps. Compute this group (as a product of cyclic groups, in terms of the classification of finitely generated abelian groups).
2. Let R be a commutative ring and N an $R-$ module.
(a) Prove that there is an isomorphism of left $R-$ modules $N \cong \operatorname{Hom}_{R}(R, N)$.
(b) Let n be a positive integer. Compute $\operatorname{Hom}_{R}\left(R^{n}, N\right)$.
(c) In a sentence, explain whether these same arguments work for $\operatorname{Hom}_{R}(N, R)$.
3. If R is a commutative ring, then for any positive integer $n, \operatorname{End}_{R}\left(R^{n}\right)$ is isomorphic (as a ring) to the ring $M_{n \times n}(R)$ of $n \times n$ matrices with entries in R. Find and prove the appropriate generalized statement if R is any (not necessarily commutative) ring. (Your proof should specialize to proving an isomorphism of rings $\operatorname{End}_{R}\left(R^{n}\right) \cong M_{n \times n}(R)$ in the case that R is commutative.) Hint: Warm-Up Problem \#6.
4. For R-modules M, N, P, there is a composition map $\operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(N, P) \longrightarrow \operatorname{Hom}_{R}(M, P)$ given by $(f, g) \longmapsto g \circ f$.
(a) When R is commutative, is this map a homomorphism of R-modules?
(b) Give an example of a ring R and distinct $R-$ modules M, N, P such that this map is surjective, and an example where this map is not surjective.
5. Let k be a field, and let V be a finite dimensional k-vector space. Define the dual space of V by

$$
V^{*}:=\operatorname{Hom}_{k}(V, k) .
$$

Recall that V^{*} has the structure of a k-vector space under pointwise addition and scalar multiplication. Use the notation A^{T} or v^{T} to denote the transpose of a matrix A or column vector v. You may use the identity $(A B)^{T}=B^{T} A^{T}$ without proof.
(a) Given a choice of basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for V, define a symmetric bilinear form

$$
(-,-): V \times V \longrightarrow k
$$

on V by the condition

$$
\left(b_{i}, b_{j}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Let $v, u \in V$. Show that this definition completely determines the value of (v, u), and moreover that (v, u) is equal to the dot product $v^{T} u$ of v and u when they are expressed as column vectors with respect to the basis B.
(b) For each $i=1, \ldots, n$, define the map $b^{i}: V \rightarrow k$ by

$$
b^{i}(v):=\left(b_{i}, v\right)
$$

Check that b^{i} is a functional, ie, a k-linear map $V \rightarrow k$, and show moreover that the map $b_{i} \mapsto b^{i}$ extends to a k-linear map

$$
\begin{aligned}
& V \longrightarrow V^{*} \\
& w \longmapsto[v \mapsto(w, v)]
\end{aligned}
$$

(c) Show that the functionals b^{1}, \ldots, b^{n} are linearly independent and span V^{*}, and therefore form a basis B^{*} (called the dual basis to B). Conclude that a choice of basis for V defines an isomorphism of vector spaces $V \cong V^{*}$.
(d) Show that if $A: V \rightarrow W$ is a linear map given by a matrix with respect to orthonormal bases B_{V} and B_{W}. Show that

$$
(w, A v)_{W}=\left(A^{T} w, v\right)_{V}
$$

Hint: Use the formula $\left(u, u^{\prime}\right)=u^{T} u^{\prime}$. This should be a one-line solution.
(e) A linear map $\phi: V \rightarrow W$ induces a map $\phi^{*}: W^{*} \rightarrow V^{*}$ by precomposition:

$$
\begin{aligned}
W^{*} & \longrightarrow V^{*} \\
{[f: W \rightarrow k] } & \longrightarrow f \circ \phi: V \rightarrow k]
\end{aligned}
$$

Show that if a linear map $V \rightarrow W$ given by a matrix A with respect to bases B_{V} and B_{W}, then the induced map $W^{*} \rightarrow V^{*}$ is given by the matrix A^{T} with respect to the dual bases B_{V}^{*} and B_{W}^{*}.
(f) Although V and V^{*} are isomorphic as abstract vector spaces, they are not naturally isomorphic in the sense that any isomorphism involves a choice of basis or choice of nondegenerate symmetric bilinear form on V. Show, in contrast, that V and $\left(V^{*}\right)^{*}$ are naturally isomorphic, by constructing an isomorphism that does not require a choice of basis or a choice of form.

6. Bonus (Optional).

(a) Let V be a vector space over a field k, and let $U \subseteq V$ be a subspace. Show that there exists a subspace $W \subseteq V$ so that $V=U \oplus W$. The subspace W is called a direct complement of U in V.
(b) Show that, if U is strictly smaller dimension than V, then its direct complement is not uniquely defined. In other words, $U \oplus W=U \oplus W^{\prime}$ does not imply that $W=W^{\prime}$ as subspaces of V.
(c) Show direct complements need not always exist in free abelian groups ${ }^{1}$: Let $M=\mathbb{Z}^{n}$ for some n and let $N \subset M$ be a \mathbb{Z}-submodule. Show by example that there may not exist a \mathbb{Z}-submodule P such that $M=N \oplus P$. If (at least one) direct complement P of N exists, let's call N a splittable submodule of M.
(d) Let V be a vector space, and let $U, W \subset V$ be subspaces such that $U \cap W=0$. Show that we can find a direct complement of U in V that contains W.
(e) Determine whether or not the same property holds for splittable submodules of free abelian groups. In other words, suppose that N, P are splittable \mathbb{Z}-submodules of $M=\mathbb{Z}^{n}$ and that $N \cap P=0$. Either prove that N must have a direct complement in \mathbb{Z}^{n} containing P, or give a counterexample.

[^0]
[^0]: ${ }^{1}$ The direct sum of two abelian groups $N \oplus P$ turns out to be the same as the direct product $N \times P$, and is analogous to the direct sum of vector spaces. You can review the notes from Fall 2017 Math 120, http://web. stanford.edu/~mkemeny/ 120lectures/L6.pdf.

