
Math 122 Homework #3 Due: Friday 20 April 2018

Reading: Ch 10.3.

Summary of definitions and main results

Definitions we’ve covered: Generators of an R–module, the R–submodule RA generated by a set A,
finite generation, cyclic module, Noetherian R–module, Noetherian ring, minimal set of generators, direct
product, direct sum (externel and internal), R–linear independence.

Main results: Examples of non-Noetherian modules, equivalent definitions of (internal) direct sums, Chi-
nese remainder theorem.

Warm-Up Questions

The “warm-up” questions do not need to be submitted (and won’t be graded).

1. Let A be a finite abelian group. Prove that HomZ(Q, A) = 0.

2. Let A and B be R–submodules of an R–module M .

(a) Prove that the sum A+B is an R–submodule of M .

(b) Verify that A+B is equal to R(A ∪B), the submodule generated by A ∪B, as submodules of M .

(c) Prove that A+B is the smallest submodule of M containing A and B in the following sense: if any
submodule N of M contains both A and B, then N contains A+B.

3. (a) Use the first isomorphism theorem to prove that if x ∈ R then the cyclic module Rx is isomorphic
to the R–module R/ann(x).

(b) Deduce that if R is an integral domain, then Rx ∼= R as R–modules.

(c) Give an example of a ring R and an element x ∈ R so that Rx 6∼= R as R–modules.

4. Let R be a ring and I a two-sided ideal of R. For each of the following R–modules M indicate whether
M is finitely generated, cyclic, or more information is needed:
M = Rn for n ∈ N, polynomials M = R[x], series M = R[[x]], M = I, and M = R/I.

5. (a) Prove that if M is a finitely generated R–module, and φ : M → N a map of R–modules, then its
image φ(M) is finitely generated by the images of the generators. Conclude in particular that all
quotients of finitely generated modules are finitely generated.

(b) Suppose that N is a finitely generated R–module, and φ : M → N is an R–linear surjective map.
Must M be finitely generated?

(c) Suppose that N is a finitely generated R–module, and φ : M → N is an R–linear injective map.
Must M be finitely generated?

6. (a) Let F be a field. Citing results from linear algebra, explain why every finitely generated F–module
is Noetherian.

(b) Citing results from group theory, explain why every finitely generated Z–module is Noetherian.

7. Suppose that V is a finite-dimensional vector space over a field F.

(a) Explain why every minimal spanning set B for V has the same size. Here we mean minimal in the
sense that the cardinality of B is smallest among all generating sets for V .

(b) Show that, if B is a generating set for V that is not minimal in size, then V is spanned by some
subset of B.
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(c) Show by example that this does not hold for general R–modules: Find an example of a ring R and
an R–module M that can be generated by m elements, but has a generating set A of size n > m
such that no subset of A generates M , for some n and m.

8. (a) Suppose that V is a vector space over a field F. Prove that the following are equivalent.

(i) B = {b1, . . . , bn} is a basis for V

(ii) Every element v ∈ V can be written uniquely as an F-linear combination of elements in B

(iii) B is a minimal (in cardinality) generating set for V as a F–module

(iv) B is a maximal (in cardinality) linearly independent subset of V

(v) V = Fb1 ⊕ Fb2 ⊕ · · · ⊕ Fbn
(vi) The following map is an isomorphism of F–modules

Fn −→ V

(a1, a2, . . . , an) 7−→ a1b1 + a2b2 + · · ·+ anbn

(b) Which of these equivalences hold for general R–modules?

(c) Brainstorm examples to show how the other equivalences may fail for general R–modules.

9. Let U, V,W be vector spaces over a field F. (For simplicity you may assume these vector spaces are finite
dimensional. If you do not make this assumption, you should assume the axiom of choice).

(a) Let φ : U → V be an injective linear map, and let ψ : V → W be a surjective linear map. Prove
that both φ and ψ have one-sided inverses.

(b) Show by example that when R is not a field, not all surjective maps of R–modules have (one-sided)
inverses, and show that not all injective maps of R–modules have (one-sided) inverses.

(Later in the course, we will describe this phenomenon by the phrase “Every short exact sequence
of vector spaces splits”)

10. (Group theory review)

(a) Given the finitely generated abelian group M = Z/m1Z× Z/m2Z× · · · × Z/mNZ, explain how to
write M as a product with the minimal number of cyclic factors.

(b) Find a minimal generating set for the groups

Z/4Z× Z/2Z, Z/2Z× Z/2Z× Z/3Z, and Z/4Z× Z/2Z× Z/3Z× Z/3Z.

11. (Linear algebra review) Let V,W be vector spaces over a field F of dimension n and m, respectively.

(a) Consider a linear map A : V → V (equivalently, of an n × n matrix A). Show that the following
are equivalent. If A satisfies any of these conditions, it is called singular.

1. A has a nontrivial kernel

2. rank(A) < n

3. A is not invertible

4. The columns of A are linearly dependent

5. The rows of A are linearly dependent

6. det(A) = 0

7. λ = 0 is an eigenvalue of A

(b) Let T be a linear transformation on a finite-dimensional F-vector space V . Show that the following
are equivalent

1. λ is an eigenvalue of T

2. (λI − T ) is singular

3. λ is a root of the characteristic polynomial of T , pT (x) = det(xI − T ).
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Assignment Questions

1. Let M be an R–module. Let’s call a generating set A for M minimal if it has the smallest cardinality
among all generating sets for M (to distinguish from being “minimal” under inclusion of sets).

(a) Suppose an R–module M can be decomposed M = Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ran for some finite set
A = {a1, a2, . . . , an} ⊆ M . Prove or find a counterexample: the following map must define an
isomorphism M ∼= Rn

Rn −→M

(r1, r2, . . . , rn) 7−→ r1a1 + r2a2 + · · ·+ rnan

(b) Suppose an R–module M can be decomposed M = Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ran for some finite set
A = {a1, a2, . . . , an} ⊆M . Prove or find a counterexample: A is a minimal generating set for M .

(c) Suppose a finitely generated R–module M has a minimal generating set A = {a1, a2, . . . , an}.We
saw in class that M need not be the internal direct sum Ra1⊕Ra2⊕ · · · ⊕Ran. Now suppose that
R is a PID, and prove or find a counterexample: M = Ra1 ⊕Ra2 ⊕ · · · ⊕Ran.

2. (a) (Chinese Remainder Theorem) Let R be any ring, and let I1, . . . Ik be two-sided ideals of R
such that Ii+Ij = R for any i 6= j (such ideals are called comaximal). Prove there is an isomorphism
of R–modules

R

(I1 ∩ I2 ∩ · · · ∩ Ik)
∼=
R

I1
× R

I2
× · · · × R

Ik
.

(b) Conclude that for pairwise coprime integers, m1,m2, . . . ,mk, there is an isomorphism of groups

Z/m1m2 · · ·mkZ ∼= Z/m1Z× Z/m2Z× · · · × Z/mkZ.

3. Let {Mi | i ∈ I} be a (possibly infinite) set of R–modules with index set I. We define the direct product
of these modules to be ∏

i∈I

Mi = {(mi)i∈I | mi ∈Mi}

When I is finite or countable, we can express elements as ordered tuples (m1,m2, . . . ,mn, . . .). The
direct product forms an R–module under pointwise addition and scalar multiplication. We define the
direct sum of the modules {Mi | i ∈ I} to be the submodule of

∏
i∈I Mi⊕

i∈I

Mi = {(mi)i∈I | mi ∈Mi, mi = 0 for all but at most finitely many i ∈ I}

These definitions coincide when I is finite.

(a) The direct sum
⊕

i∈I Mi is a submodule of the direct product
∏

i∈I Mi, but show by example that
these may not be isomorphic. Hint : What are their cardinalities?

(b) Show that
⊕

i∈I Mi is generated by the set
⋃

i∈I Mi, but that
∏

i∈I Mi may not be.

4. (a) Let A1, A2, . . . , An be R–modules, and Bi ⊆ Ai a submodule for each i. Show that

A1 ×A2 × · · · ×An

B1 ×B2 × · · · ×Bn

∼=
A1

B1
× A2

B2
× · · · × An

Bn
.

(b) Let R be a commutative ring, and let n,m ∈ N. Prove that that Rn ∼= Rm if and only if n = m.
You may assume without proof that finite-dimensional vector spaces are isomorphic if and only if
their dimensions are equal. You may also assume Zorn’s Lemma. Hint: Dummit–Foote 10.3 # 2.

(c) Show that this property fails for noncommutative rings – that is, find a ring R which admits an
isomorphism of R–modules R ∼= R2. Conclude that free R–modules need not have a uniquely
defined rank. Hint: Dummit–Foote 10.3 # 27.
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5. (a) Let M be an R–module. Prove that the following statements are equivalent.

(i) M is Noetherian in the sense that every R–submodule of M is finitely generated.

(ii) M satisfies the ascending chain condition on submodules. This is the condition that every
sequences of submodules of M with inclusions

M1 ⊆M2 ⊆M3 ⊆ · · ·

(called an ascending chain) eventually stabilizes in the sense that there exists some index k so
that

Mk = Mk+1 = Mk+2 = · · ·

(b) A ring R is called Noetherian if the R–module R is Noetherian.

(i) Let R be a PID. Show that R is Noetherian.

(ii) Let R be the ring of polynomials Q〈x, y〉 in noncommuting variables x and y. Show that R
is not Noetherian.

6. Bonus (Optional). Let R be a ring. Show that an arbitrary direct sum of free R–modules is free, but
an arbitrary direct product need not be. Hint: Dummit–Foote 10.3 # 24.
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