Due: Friday 27 April 2018

Reading: Dummit-Foote Ch. 10.3, 10.5, & pp 911-913.

Summary of definitions and main results

Definitions we've covered: Linear independence, basis, free module, rank of a free module, universal property, category, object, morphism, functor, coproduct, abelianization, monomorphism, epimorphism, isomorphism, covariant and contravariant functors, forgetful functor, free functor, dual space functor, functors $\operatorname{Hom}_R(D,-)$ and $\operatorname{Hom}_R(-,D)$, exact, exact sequence, short exact sequence, extension of C by A, presentation.

Main results: universal property for free modules, construction of the free module F(A), verification that F(A) satisfies the universal property, universal properties define objects up to unique isomorphism, in the category R-mod monomorphisms are precisely the injections, free functor $F: \underline{\text{Set}} \to R-\underline{\text{Mod}}$ is a covariant functor, $\text{Hom}_R(D,-)$ is a covariant functor.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded).

1. Let N_1, \ldots, N_k be R-modules, and let $M = N_1 \times N_2 \times \cdots \times N_k$ be their external direct sum. Show that M naturally contains isomorphic copies of each R-module N_i via the inclusion

$$N_i \xrightarrow{\cong} (0 \times \cdots \times 0 \times N_i \times 0 \times \cdots \times 0) \hookrightarrow M.$$

Show that M is the internal direct sum of these k submodules.

- 2. In this question, we will verify how the universal property defining free modules will fail for modules that are not free. Let $R = \mathbb{Z}$.
 - (a) Consider the abelian group $\mathbb{Z}/m\mathbb{Z}$ and the subset $A = \{1 \pmod m\}$. Show that $\mathbb{Z}/m\mathbb{Z}$ fails to satisfy the universal property for being the free module on the basis A. Hint: Consider $M = \mathbb{Z}$ and any nonzero set map $A \to M$.
 - (b) Consider the abelian group \mathbb{Z} and the subset $A = \{2\}$. Show that \mathbb{Z} fails to satisfy the universal property for being the free module on the basis A.

 Hint: Consider $M = \mathbb{Z}$ and the set map taking $2 \in A$ to $1 \in M$.
 - (c) Consider the abelian group $\mathbb{Z} \oplus \mathbb{Z}$ and the subset $A = \{(1,0)\}$. Show that $\mathbb{Z} \oplus \mathbb{Z}$ fails to satisfy the universal property for being the free module on the basis A.
- 3. (a) Let A be any finite set of n elements. Show that the free R-module on A is isomorphic as an R-module to R^n .
 - (b) For R commutative, are the polynomial rings R[x] and R[x, y] free R-modules? What about Laurent polynomials $R[x, x^{-1}]$? Rational functions in x?
 - (c) Do these arguments work for series R[[x]]?
- 4. (a) Show that $M = \mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$ is a free $\mathbb{Z}/10\mathbb{Z}$ -module by finding a basis.
 - (b) Show that the element (2,2) cannot be an element of any basis for M.
 - (c) Is the submodule $N = \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$ also free?
- 5. Consider the free \mathbb{Z} -module $F = \mathbb{Z}^2$, and its submodule N = 2F. Is N a free \mathbb{Z} -module?
- 6. Show that $M = \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ is a rank-2 free module over $\mathbb{Z}/6\mathbb{Z}$, and find all possible pairs of elements $\{a,b\} \subset M$ that form a basis for M.

- Due: Friday 27 April 2018
- 7. (a) Show that A is a basis for the R-module RA it generates if and only if A is R-linearly independent.
 - (b) Find a counterexample to the following false statement: If M is a free R-module and $A \subseteq M$ is an R-linearly independent subset of M, then A can be extended to a basis for M.
- 8. (a) Let F be the free R-module on a set A. Show that if R has no zero divisors and $N \subseteq F$ is any nonzero submodule, then $\operatorname{ann}(N) = \{0\}$.
 - (b) Let $R = \mathbb{Z}/10\mathbb{Z}$ and let $F = R^2$ be the free R-module of rank 2. Compute the annihilator of the submodule 2F.
- 9. In class (and in Dummit-Foote 10.3 Theorem 6) we gave a construction of a free module F(A) on a set A. Verify that this construction is in fact a free module with basis A (as given in the definition on p354). Show moreover that $F(A) \cong \bigoplus_A R$.
- 10. (a) Citing results from linear algebra, explain why every vector space over a field \mathbb{F} is a free \mathbb{F} -module.
 - (b) When \mathbb{F} is a field, any minimal finite generating set $B = \{a_1, \ldots, a_n\}$ of an \mathbb{F} -module must be linearly independent and therefore a basis. Prove that in general, if an R-module has a minimal generating set $B = \{a_1, \ldots, a_n\}$, then R need not be free on B.
 - (c) Suppose that M is an R-module containing elements $\{a_1, a_2, \ldots, a_n\}$ such that $M = Ra_1 \oplus Ra_2 \oplus \cdots \oplus Ra_n$. Explain how $A = \{a_1, a_2, \ldots a_n\}$ could fail to be a basis for M. What conditions on the elements a_i could ensure that A is a basis?
- 11. (a) Prove that in the category of R-modules, a morphism is epic if and only if it is a surjective map.
 - (b) Prove that in the category of rings, the map $\mathbb{Z} \to \mathbb{Q}$ is an epic morphism that is not surjective.
- 12. Let \mathscr{C} be a category containing objects A and B, and let F be a functor $F:\mathscr{C}\to\mathscr{D}$. Show that if A and B are isomorphic objects of \mathscr{C} , then F(A) and F(B) will be isomorphic objects of \mathscr{D} .
- 13. Given a group G, define a category \mathscr{G} with a single object \bigstar and morphisms $\operatorname{Hom}_{\mathscr{G}}(\bigstar, \bigstar) = \{g \mid g \in G\}$. The composition law is given by the group operation. Show that a function between groups $G \to H$ is a group homomorphism if and only if the corresponding map between categories $\mathscr{G} \to \mathscr{H}$ is a functor.
- 14. Let \underline{fSet} denote the category of finite sets and all functions between sets. Let $\mathscr{P}: \underline{fSet} \to \underline{fSet}$ be the function that takes a finite set A to its power set $\mathscr{P}(A)$, the set of all subsets of A. If $f: A \to B$ is a function of finite sets, let $\mathscr{P}(f): \mathscr{P}(A) \to \mathscr{P}(B)$ be the function that takes a subset $U \subseteq A$ to the subset $f(U) \subseteq B$.
 - (a) Show that \mathscr{P} is a covariant functor.
 - (b) What if we had instead defined $\mathscr{P}(f):\mathscr{P}(B)\to\mathscr{P}(A)$ to take a subset $U\subseteq B$ to its preimage $f^{-1}(U)\subseteq A$ under f?
- 15. Let 0 denote the trivial abelian group. Give an example of a functor $F : \underline{Ab} \to \underline{Ab}$ such that F(0) = 0, and a functor $F : \underline{Ab} \to \underline{Ab}$ such that $F(0) \neq 0$.
- 16. Write down short exact sequences giving presentations of the following R-modules M. Give a list of generators and relations for M.

(a)
$$R^n$$

(c)
$$R = \mathbb{Q}, M = \mathbb{Q}[x]/\langle x^2 + 1 \rangle$$

(b)
$$R = \mathbb{Z}, M = \mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$$

(d)
$$R = \mathbb{C}[x, y], M = \langle x, y \rangle$$

- 17. (a) Find two non-isomorphic extensions of \mathbb{Z} -modules $\mathbb{Z}/n\mathbb{Z}$ by \mathbb{Z} .
 - (b) Find two non-isomorphic extensions of \mathbb{Z} -modules $\mathbb{Z}/n\mathbb{Z}$ by $\mathbb{Z}/n\mathbb{Z}$.
 - (c) How many extensions of \mathbb{Z} by $\mathbb{Z}/n\mathbb{Z}$ can you find?
 - (d) Show that if $0 \to U \to W \to V \to 0$ is a short exact sequence of vector spaces, then $W \cong V \oplus U$.

Due: Friday 27 April 2018

Assignment Questions

1. (Coproducts). Let C be a category with objects X and Y. The coproduct of X and Y (if it exists) is an object $X \coprod Y$ in C with maps $f_x : X \to X \coprod Y$ and $f_y : Y \to X \coprod Y$ satisfying the following universal property: whenever there is an object Z with maps $g_x : X \to Z$ and $g_y : Y \to Z$, there exists a unique map $u : X \coprod Y \to Z$ that makes the following diagram commute:

- (a) Let X and Y be objects in \mathcal{C} . Show that, if the coproduct $(X \coprod Y, f_x, f_y)$ exists in \mathcal{C} , then the universal property determines it uniquely up to unique isomorphism.
- (b) Prove that in the category of R-modules, the coproduct of R-modules $X \coprod Y$ is $X \oplus Y$ with the canonical inclusions of X and Y. In other words, this universal property defines the direct sum operation on R-modules.
- (c) Explain how to reinterpret this universal property for the direct sum of *R*–modules as a bijection of sets

$$\operatorname{Hom}_R(X \oplus Y, Z) \cong \operatorname{Hom}_R(X, Z) \times \operatorname{Hom}_R(Y, Z)$$

for R-modules X, Y, Z.

- (d) Prove that in the category of groups, the univeral property for the coproduct $X \coprod Y$ of groups X and Y does not define the direct product of those groups along with their canonical inclusions. (It is a construction called the *free product* of groups).
- (e) Prove that in the category of sets, the coproduct $X \coprod Y$ of sets X and Y is their disjoint union.
- 2. (a) A zero object **0** in a category is an object with the following property: For any object M, there is a unique morphism from M to **0**, and a unique morphism from **0** to M. Show that if a category has a zero object, then it is unique up to unique isomorphism.
 - (b) Let \mathcal{C} be the category of R-modules, and show that the zero module $\{0\}$ is a zero object. This definition allows us to define the zero map 0 between R-modules M and N: it is the composition of the unique map $M \to \mathbf{0}$ with the unique map $\mathbf{0} \to N$.
 - (c) Let \mathcal{C} be the category of R-modules. If $f: M \to N$ is a morphism in \mathcal{C} , then define the kernel $i: K \to M$ of f to be the map i such that $f \circ i$ is the zero morphism 0

and satisfying the following: whenever there is a map of R-modules $g: P \to M$ such that $f \circ g = 0$, there is a unique map $u: P \to K$ such that $i \circ u = g$. In other words, there is a unique map u that

Due: Friday 27 April 2018

Math 122

makes the following diagram commute.

Verify that the kernel of an R-module map (in the way we had previously defined it, as the preimage of 0) does indeed satisfy this universal property.

- (d) Show that this universal property determines the map $i: K \to M$ uniquely up to unique isomorphism. Conclude that we therefore can indeed take this universal property as the *definition* of the kernel of f.
- 3. (Abelianization). Let \underline{Grp} denote the category of groups and group homomorphisms, and let \underline{Ab} denote the category of abelian groups and group homomorphisms. Define the *abelianization* G^{ab} of a group G to be the quotient of G by its *commutator subgroup* [G, G], the subgroup normally generated by *commutators*, elements of the form $ghg^{-1}h^{-1}$ for all $g, h \in G$.
 - (a) Define a map of categories $[-,-]: \underline{\operatorname{Grp}} \to \underline{\operatorname{Grp}}$ that takes a group G to its commutator subgroup [G,G], and a group morphism $f: \overline{G} \to H$ to its restriction to [G,G]. Check that this map is well defined (ie, check that $f([G,G]) \subseteq [H,H]$) and verify that [-,-] is a functor.
 - (b) Show that G^{ab} is an abelian group. Show moreover that if G is abelian, then $G = G^{ab}$.
 - (c) Show that the quotient map $G \to G^{ab}$ satisfies the following universal property: Given any **abelian** group H and group homomorphism $f: G \to H$, there is a unique group homomorphism $\overline{f}: G^{ab} \to H$ that makes the following diagram commute:

$$G \xrightarrow{f} H$$

$$\downarrow \qquad \uparrow \qquad \downarrow$$

$$G^{ab}$$

$$G^{ab}$$

This universal property shows that G^{ab} is in a sense the "largest" abelian quotient of G.

- (d) Show that the map ab that takes a group G to its abelianization G^{ab} can be made into a functor $ab : \underline{\operatorname{Grp}} \to \underline{\operatorname{Ab}}$ by explaining where it maps morphisms of groups $f : G \to H$, and verifying that it is functorial.
- (e) The category \underline{Ab} is a subcategory of \underline{Grp} . Define the functor $\mathcal{A}: \underline{Ab} \to \underline{Grp}$ to be the inclusion of this subcategory; \mathcal{A} takes abelian groups and group homomorphisms in \underline{Ab} to the same abelian groups and the same group homomorphisms in \underline{Grp} . Briefly explain why the universal property in Part (c) can be rephrased as follows: Given groups $G \in \underline{Grp}$ and $H \in \underline{Ab}$, there is a natural bijection between the sets of morphisms:

$$\operatorname{Hom}_{\operatorname{Grp}}(G,\mathcal{A}(H)) \cong \operatorname{Hom}_{\operatorname{\underline{Ab}}}(G^{ab},H)$$

Remark: Since this bijection is "natural" (a condition we won't formally define or check) it means that $A: \underline{Ab} \to Grp$ and $ab: Grp \to \underline{Ab}$ are what we call a pair of *adjoint functors*.

4. We proved in class that the map $\operatorname{Hom}_R(D,-): R-\operatorname{\underline{Mod}} \to \operatorname{\underline{Ab}}$ is a covariant functor.

- Due: Friday 27 April 2018
- (a) We have another name for the functor of abelian groups $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, -)$. What is it?
- (b) To which groups does the functor $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, -)$ map the \mathbb{Z} -modules \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, $(\mathbb{Z}/n\mathbb{Z})^p$, $\mathbb{Z}/n^p\mathbb{Z}$, and $\mathbb{Z}/m\mathbb{Z}$ (for m, n coprime)? Express your solutions as a product of cyclic groups. You can simply list the answers; no proof needed.
- (c) Describe the sequence of abelian groups and the maps obtained by applying $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},-)$ to the following short exact sequences:

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\text{mod } 2} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\psi} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \xrightarrow{\varphi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{\text{mod } 2} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

(Here, ψ is the inclusion of the first direct summand $\mathbb{Z}/2\mathbb{Z}$ and φ is the projection map onto the second direct summand $\mathbb{Z}/2\mathbb{Z}$.)

In particular, state which resulting sequence is exact.

- 5. Bonus (Optional). Let I be a (possibly infinite) index set, and let M_i , $(i \in I)$, and N be R-modules.
 - (a) (i) Prove the following isomorphisms of abelian groups: $\operatorname{Hom}_R\left(\bigoplus_{i\in I}M_i,\ N\right)\cong\prod_{i\in I}\operatorname{Hom}_R(M_i,N)$
 - (ii) Use this isomorphism to state a universal property for the direct sum $\bigoplus_{i \in I} M_i$.
 - (b) (i) Prove the following isomorphisms of abelian groups: $\operatorname{Hom}_R\left(N,\ \prod_{i\in I}M_i\right)\cong\prod_{i\in I}\operatorname{Hom}_R(N,M_i)$
 - (ii) Use this isomorphism to state a universal property for the direct product $\prod_{i \in I} M_i$.
- 6. Bonus (Optional). Show that a \mathbb{Z} -linearly independent subset B of the free abelian group \mathbb{Z}^N can be extended to a basis for \mathbb{Z}^N if and only if $\mathbb{Z}B$ is *splittable* in the sense of Homework #2 Bonus.