
Math 122 Homework #4 Due: Friday 27 April 2018

Reading: Dummit–Foote Ch. 10.3, 10.5, & pp 911–913.

Summary of definitions and main results

Definitions we’ve covered: Linear independence, basis, free module, rank of a free module, universal
property, category, object, morphism, functor, coproduct, abelianization, monomorphism, epimorphism, iso-
morphism, covariant and contravariant functors, forgetful functor, free functor, dual space functor, functors
HomR(D,−) and HomR(−, D), exact, exact sequence, short exact sequence, extension of C by A, presenta-
tion.

Main results: universal property for free modules, construction of the free module F (A), verification that
F (A) satisfies the universal property, universal properties define objects up to unique isomorphism, in the
category R-mod monomorphisms are precisely the injections, free functor F : Set → R–Mod is a covariant
functor, HomR(D,−) is a covariant functor.

Warm-Up Questions

The “warm-up” questions do not need to be submitted (and won’t be graded).

1. Let N1, . . . , Nk be R–modules, and let M = N1×N2× · · ·×Nk be their external direct sum. Show that
M naturally contains isomorphic copies of each R–module Ni via the inclusion

Ni
∼=−→
(

0× · · · × 0×Ni × 0× · · · × 0
)
↪→M.

Show that M is the internal direct sum of these k submodules.

2. In this question, we will verify how the universal property defining free modules will fail for modules
that are not free. Let R = Z.

(a) Consider the abelian group Z/mZ and the subset A = {1 (mod m)}. Show that Z/mZ fails to
satisfy the universal property for being the free module on the basis A.
Hint: Consider M = Z and any nonzero set map A→M .

(b) Consider the abelian group Z and the subset A = {2}. Show that Z fails to satisfy the universal
property for being the free module on the basis A.
Hint: Consider M = Z and the set map taking 2 ∈ A to 1 ∈M .

(c) Consider the abelian group Z⊕Z and the subset A = {(1, 0)}. Show that Z⊕Z fails to satisfy the
universal property for being the free module on the basis A.

3. (a) Let A be any finite set of n elements. Show that the free R–module on A is isomorphic as an
R–module to Rn.

(b) For R commutative, are the polynomial rings R[x] and R[x, y] free R–modules? What about Laurent
polynomials R[x, x−1]? Rational functions in x?

(c) Do these arguments work for series R[[x]]?

4. (a) Show that M = Z/10Z⊕ Z/10Z is a free Z/10Z–module by finding a basis.

(b) Show that the element (2, 2) cannot be an element of any basis for M .

(c) Is the submodule N = Z/5Z⊕ Z/10Z also free?

5. Consider the free Z–module F = Z2, and its submodule N = 2F . Is N a free Z–module?

6. Show that M = Z/6Z⊕ Z/6Z is a rank-2 free module over Z/6Z, and find all possible pairs of elements
{a, b} ⊂M that form a basis for M .

Page 1



Math 122 Homework #4 Due: Friday 27 April 2018

7. (a) Show that A is a basis for the R–module RA it generates if and only if A is R–linearly independent.

(b) Find a counterexample to the following false statement: If M is a free R–module and A ⊆M is an
R–linearly independent subset of M , then A can be extended to a basis for M .

8. (a) Let F be the free R–module on a set A. Show that if R has no zero divisors and N ⊆ F is any
nonzero submodule, then ann(N) = {0}.

(b) Let R = Z/10Z and let F = R2 be the free R–module of rank 2. Compute the annihilator of the
submodule 2F .

9. In class (and in Dummit-Foote 10.3 Theorem 6) we gave a construction of a free module F (A) on a set
A. Verify that this construction is in fact a free module with basis A (as given in the definition on p354).
Show moreover that F (A) ∼=

⊕
AR.

10. (a) Citing results from linear algebra, explain why every vector space over a field F is a free F–module.

(b) When F is a field, any minimal finite generating set B = {a1, . . . , an} of an F–module must be
linearly independent and therefore a basis. Prove that in general, if an R–module has a minimal
generating set B = {a1, . . . , an}, then R need not be free on B.

(c) Suppose that M is an R–module containing elements {a1, a2, . . . , an} such that M = Ra1 ⊕Ra2 ⊕
· · · ⊕Ran. Explain how A = {a1, a2, . . . an} could fail to be a basis for M . What conditions on the
elements ai could ensure that A is a basis?

11. (a) Prove that in the category of R–modules, a morphism is epic if and only if it is a surjective map.

(b) Prove that in the category of rings, the map Z→ Q is an epic morphism that is not surjective.

12. Let C be a category containing objects A and B, and let F be a functor F : C → D . Show that if A
and B are isomorphic objects of C , then F (A) and F (B) will be isomorphic objects of D .

13. Given a group G, define a category G with a single object F and morphisms HomG (F,F) = {g | g ∈ G}.
The composition law is given by the group operation. Show that a function between groups G → H is
a group homomorphism if and only if the corresponding map between categories G →H is a functor.

14. Let f Set denote the category of finite sets and all functions between sets. Let P : f Set → f Set be the
function that takes a finite set A to its power set P(A), the set of all subsets of A. If f : A → B is
a function of finite sets, let P(f) : P(A) → P(B) be the function that takes a subset U ⊆ A to the
subset f(U) ⊆ B.

(a) Show that P is a covariant functor.

(b) What if we had instead defined P(f) : P(B) → P(A) to take a subset U ⊆ B to its preimage
f−1(U) ⊆ A under f?

15. Let 0 denote the trivial abelian group. Give an example of a functor F : Ab→ Ab such that F (0) = 0,
and a functor F : Ab→ Ab such that F (0) 6= 0.

16. Write down short exact sequences giving presentations of the following R–modules M . Give a list of
generators and relations for M .

(a) Rn

(b) R = Z, M = Z/10Z⊕ Z/5Z
(c) R = Q, M = Q[x]/〈x2 + 1〉
(d) R = C[x, y], M = 〈x, y〉

17. (a) Find two non-isomorphic extensions of Z–modules Z/nZ by Z.

(b) Find two non-isomorphic extensions of Z–modules Z/nZ by Z/nZ.

(c) How many extensions of Z by Z/nZ can you find?

(d) Show that if 0→ U →W → V → 0 is a short exact sequence of vector spaces, then W ∼= V ⊕ U .
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Assignment Questions

1. (Coproducts). Let C be a category with objects X and Y . The coproduct of X and Y (if it exists) is an
object X

∐
Y in C with maps fx : X → X

∐
Y and fy : Y → X

∐
Y satisfying the following universal

property: whenever there is an object Z with maps gx : X → Z and gy : Y → Z, there exists a unique
map u : X

∐
Y → Z that makes the following diagram commute:

Z

X

gx

;;

fx

// X
∐
Y

∃!u

OO

Y

gy

bb

fy

oo

(a) Let X and Y be objects in C. Show that, if the coproduct (X
∐
Y, fx, fy) exists in C, then the

universal property determines it uniquely up to unique isomorphism.

(b) Prove that in the category of R–modules, the coproduct of R–modules X
∐
Y is X ⊕ Y with the

canonical inclusions of X and Y . In other words, this universal property defines the direct sum
operation on R–modules.

(c) Explain how to reinterpret this universal property for the direct sum of R–modules as a bijection
of sets

HomR(X ⊕ Y,Z) ∼= HomR(X,Z)×HomR(Y,Z)

for R–modules X,Y, Z.

(d) Prove that in the category of groups, the univeral property for the coproduct X
∐
Y of groups X

and Y does not define the direct product of those groups along with their canonical inclusions. (It
is a construction called the free product of groups).

(e) Prove that in the category of sets, the coproduct X
∐
Y of sets X and Y is their disjoint union.

2. (a) A zero object 0 in a category is an object with the following property: For any object M , there is a
unique morphism from M to 0, and a unique morphism from 0 to M . Show that if a category has
a zero object, then it is unique up to unique isomorphism.

(b) Let C be the category of R–modules, and show that the zero module {0} is a zero object. This
definition allows us to define the zero map 0 between R–modules M and N : it is the composition
of the unique map M → 0 with the unique map 0→ N .

(c) Let C be the category of R–modules. If f : M → N is a morphism in C, then define the kernel
i : K →M of f to be the map i such that f ◦ i is the zero morphism 0

K

i

��

0 // 0

0

��
M

f
// N

and satisfying the following: whenever there is a map of R–modules g : P →M such that f ◦ g = 0,
there is a unique map u : P → K such that i ◦ u = g. In other words, there is a unique map u that
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makes the following diagram commute.

P

g

��

0

!!

∃! u

  
K

i

��

0 // 0

0

��
M

f
// N

Verify that the kernel of an R–module map (in the way we had previously defined it, as the preimage
of 0) does indeed satisfy this universal property.

(d) Show that this univeral property determines the map i : K →M uniquely up to unique isomorphism.
Conclude that we therefore can indeed take this universal property as the definition of the kernel
of f .

3. (Abelianization). Let Grp denote the category of groups and group homomorphisms, and let Ab

denote the category of abelian groups and group homomorphisms. Define the abelianization Gab of a
group G to be the quotient of G by its commutator subgroup [G,G], the subgroup normally generated
by commutators, elements of the form ghg−1h−1 for all g, h ∈ G.

(a) Define a map of categories [−,−] : Grp → Grp that takes a group G to its commutator subgroup
[G,G], and a group morphism f : G → H to its restriction to [G,G]. Check that this map is well
defined (ie, check that f([G,G]) ⊆ [H,H]) and verify that [−,−] is a functor.

(b) Show that Gab is an abelian group. Show moreover that if G is abelian, then G = Gab.

(c) Show that the quotient map G→ Gab satisfies the following universal property: Given any abelian
groupH and group homomorphism f : G→ H, there is a unique group homomorphism f : Gab → H
that makes the following diagram commute:

G

��

f // H

Gab
∃! f

==

This universal property shows that Gab is in a sense the “largest” abelian quotient of G.

(d) Show that the map ab that takes a group G to its abelianization Gab can be made into a functor
ab : Grp→ Ab by explaining where it maps morphisms of groups f : G→ H, and verifying that it
is functorial.

(e) The category Ab is a subcategory of Grp. Define the functor A : Ab → Grp to be the inclusion
of this subcategory; A takes abelian groups and group homomorphisms in Ab to the same abelian
groups and the same group homomorphisms in Grp. Briefly explain why the universal property
in Part (c) can be rephrased as follows: Given groups G ∈ Grp and H ∈ Ab, there is a natural
bijection between the sets of morphisms:

HomGrp(G,A(H)) ∼= HomAb(Gab, H)

Remark: Since this bijection is “natural” (a condition we won’t formally define or check) it means
that A : Ab→ Grp and ab : Grp→ Ab are what we call a pair of adjoint functors.

4. We proved in class that the map HomR(D,−) : R–Mod→ Ab is a covariant functor.
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(a) We have another name for the functor of abelian groups HomZ(Z,−). What is it?

(b) To which groups does the functor HomZ(Z/nZ,−) map the Z–modules Z, Z/nZ, (Z/nZ)p, Z/npZ,
and Z/mZ (for m,n coprime)? Express your solutions as a product of cyclic groups. You can
simply list the answers; no proof needed.

(c) Describe the sequence of abelian groups and the maps obtained by applying HomZ(Z/2Z,−) to the
following short exact sequences:

0 −→ Z/2Z 2−→ Z/4Z mod 2−−−−→ Z/2Z −→ 0.

0 −→ Z/2Z ψ−→ Z/2Z⊕ Z/2Z ϕ−→ Z/2Z −→ 0.

0 −→ Z 2−→ Z mod 2−−−−→ Z/2Z −→ 0.

(Here, ψ is the inclusion of the first direct summand Z/2Z and ϕ is the projection map onto the
second direct summand Z/2Z.)

In particular, state which resulting sequence is exact.

5. Bonus (Optional). Let I be a (possibly infinite) index set, and let Mi, (i ∈ I), and N be R–modules.

(a) (i) Prove the following isomorphisms of abelian groups: HomR

(⊕
i∈I

Mi, N

)
∼=
∏
i∈I

HomR(Mi, N)

(ii) Use this isomorphism to state a universal property for the direct sum
⊕

i∈IMi.

(b) (i) Prove the following isomorphisms of abelian groups: HomR

(
N,
∏
i∈I

Mi

)
∼=
∏
i∈I

HomR(N,Mi)

(ii) Use this isomorphism to state a universal property for the direct product
∏
i∈IMi.

6. Bonus (Optional). Show that a Z–linearly independent subset B of the free abelian group ZN can
be extended to a basis for ZN if and only if ZB is splittable in the sense of Homework #2 Bonus.
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