Reading: Dummit-Foote Ch 10.4.

Summary of definitions and main results

Definitions we've covered: exact functor, left exact functor, right exact functor, tensor product of modules (as an abelian group), (S, R)-bimodule, tensor product of modules (as an S-module), R-balanced map, R-bilinear map, universal property of the tensor product (version for abelian groups, and version for R module structure when R is commutative), tensor product of maps, extension of scalars, R-algebra, Jordan block with eigenvalue λ.

Main results: $\operatorname{Hom}_{R}(D,-)$ is left exact, $\operatorname{Hom}_{R}(-, D)$ is a contravariant functor and is left exact, an explicit construction of the tensor product $M \otimes_{R} N$, verification that the construction satisfies the universal property, tensor product distributes over direct sums, $R^{n} \otimes_{R} N \cong N^{n}$, tensor product is associative, using the universal property to perform computations

Warm-Up Questions

1. Let R be a ring, let A be a right R-module and B a left R-module. Prove that the universal property of the tensor product defines the abelian group $A \otimes_{R} B$ uniquely up to unique isomorphism.
2. Let R be a ring with right R-module M and left $R-$ module N. What is the additive identity in the tensor product $M \otimes_{R} N$? Explain why the elements $m \otimes 0$ and $0 \otimes n$ are zero for any $m \in M$ or $n \in N$.
3. (a) Explain why, when R is commutative, a left R-module M will also be a right $R-$ module under the action $m r=r m$, and conversely any right $R-\operatorname{module} N$ has an induced left $R-$ module structure.
(b) Verify that these actions give M the structure of an (R, R)-bimodule (simply called an R-bimodule).
(c) Why will these constructions generally not work when R is non-commutative?
4. Let R be a ring with right $R-$ module M and left $R-$ module N. Show that the natural map

$$
M \times N \longrightarrow M \otimes_{R} N
$$

is not a group homomorphism in general. What are the constraints on this map, as imposed by the defining relations of $M \otimes_{R} N$?
5. (a) Let R and S be rings (possibly the same ring). Let M be a right $R-$ module and N a left R-module. When will the tensor product $M \otimes_{R} N$ have the structure of an abelian group, and under what conditions will it additionally have the structure of an S-module?
(b) Verify that if M is an (S, R)-bimodule, then $M \otimes_{R} N$ has an S-module structure. Why do we need to assume that the actions of S and R on M commute?
(c) Suppose that M is an (S, R)-bimodule. Find a way to modify the statement of the universal property of the tensor product so that it determines $M \otimes_{R} N$ as an S-module (and not just as an abelian group).
6. Let R be a commutative ring. Let e_{1}, e_{2}, e_{3} be a basis for the R^{3} and let $f_{1}, f_{2}, f_{3}, f_{4}$ be a basis for R^{4}. Expand the tensor

$$
\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) \otimes\left(b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}+b_{4} f_{4}\right) \quad \in R^{3} \otimes_{R} R^{4}
$$

7. Let R be a ring with right R-module M and left R-module N. Which of the following maps are $R-$ balanced? Which are homomorphisms of abelian groups? For the maps that are R-balanced, describe how they factor through the tensor product.
(a) The identity map $M \times N \longrightarrow M \times N$.
(b) The natural projections of $M \times N$ onto M and N.
(c) The natural map $M \times N \longrightarrow M \otimes_{R} N$.
(d) Suppose M and N are ideals of R. The multiplication map

$$
\begin{aligned}
M \times N & \longrightarrow R \\
(m, n) & \longmapsto m n
\end{aligned}
$$

(e) Suppose R is commutative. The matrix multiplication map

$$
\begin{aligned}
M_{n \times k}(R) \times M_{k \times m}(R) & \longrightarrow M_{n \times m}(R) \\
(A, B) & \longmapsto A B
\end{aligned}
$$

(f) Suppose R is commutative and M, N, P are R-modules. The composition map:

$$
\begin{aligned}
\operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(N, P) & \longrightarrow \operatorname{Hom}_{R}(M, P) \\
(f, g) & \longmapsto g \circ f
\end{aligned}
$$

(g) Suppose R is commutative. The dot product map:

$$
\begin{aligned}
R^{n} \times R^{n} & \longrightarrow R \\
(v, w) & \longmapsto v \cdot w
\end{aligned}
$$

(h) Suppose R is commutative. The cross product map:

$$
\begin{aligned}
R^{3} \times R^{3} & \longrightarrow R^{3} \\
(v, w) & \longmapsto v \times w
\end{aligned}
$$

(i) Suppose R is commutative. The determinant map:

$$
\begin{aligned}
R^{2} \times R^{2} & \longrightarrow R \\
\quad(v, w) & \longmapsto \operatorname{det}\left[\begin{array}{cc}
\mid & \mid \\
v & w \\
\mid & \mid
\end{array}\right]
\end{aligned}
$$

8. Let $V \cong \mathbb{C}^{2}$ be a complex vector space, and let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix with respect to the standard basis e_{1}, e_{2}. Write down the matrix for the linear map induced by A on the four-dimensional vector space $V \otimes V$ with respect to the basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$.
9. Let V be a complex vector space. Let $T: V \rightarrow V$ be a diagonalizable linear map with eigenbasis $v_{1}, v_{2}, \ldots v_{n}$, and associated eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. What are the eigenvalues of the map induced by T on $V \otimes V$, and what are the associated eigenvectors?
10. Let R be a ring and S a subring.
(a) Give an example of R, S and an S-module that embeds into an R-module.
(b) Give an example of R, S, and an S-module that cannot embed into any R-module.
11. (a) We defined how to form the tensor product $M \otimes_{R} N$ of a right R-module M and a left R-module N. What would go wrong with this construction if M instead had the structure of a left R-module?
(b) Show that if M is an (S, R)-bimodule and N a left R-module, the tensor product $M \otimes_{R} N$ has the structure of an S-module. Why must the left action of S and the right action of R on M commute?
12. Verify that the tensor product of maps respects composition:

$$
(\tilde{\phi} \otimes \tilde{\psi}) \circ(\phi \otimes \psi)=(\tilde{\phi} \circ \phi) \otimes(\tilde{\psi} \circ \psi)
$$

13. Fill in the details of the proof of that the tensor product associates (Dummit-Foote 10.4 Theorem 14).

Assignment Questions

1. (The functor $\operatorname{Hom}_{R}(-, D)$).
(a) Show that if D is any R-module, then there is a contravariant functor

$$
\begin{aligned}
& \operatorname{Hom}_{R}(-, D): R-\underline{\mathrm{Mod}} \longrightarrow \underline{\mathrm{Ab}} \\
& M \longmapsto \operatorname{Hom}_{R}(M, D) \\
& {[\phi: M \rightarrow N] } \longmapsto\left[\phi^{*}: \operatorname{Hom}_{R}(N, D) \longrightarrow \operatorname{Hom}_{R}(M, D)\right] \\
& f \longmapsto f \circ \phi
\end{aligned}
$$

Remark: The vector space dual functor $\operatorname{Hom}_{k}(-, k): V \mapsto \operatorname{Hom}_{k}(V, k)=V^{*}$ is a special case.
(b) Show that $\operatorname{Hom}_{R}(-, D)$ is left exact. This means (for a contravariant functor) that for any short exact sequence

$$
0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \rightarrow 0
$$

the following is exact:

$$
0 \longrightarrow \operatorname{Hom}_{R}(C, D) \xrightarrow{\phi^{*}} \operatorname{Hom}_{R}(B, D) \xrightarrow{\psi^{*}} \operatorname{Hom}_{R}(A, D) .
$$

(c) Show that this functor may not be exact by finding an example of an injective R-module map $\psi: M \rightarrow N$ such that ψ^{*} is not surjective.
2. Let R be a commutative ring. Let M, N, L be R-modules.
(a) Show that any R-module has the structure of an (R, R)-bimodule.
(b) Verify that the tensor product $M \otimes_{R} N$ (as defined by the quotient of abelian groups $\left.F(M \times N) / I_{\otimes}\right)$ has a well-defined R-module structure.
(c) A map $\varphi: M \times N \rightarrow L$ is called R-bilinear if it satisfies the following properties:

$$
\begin{array}{rlrl}
\varphi\left(r_{1} m_{1}+r_{2} m_{2}, n\right) & =r_{1} \varphi\left(m_{1}, n\right)+r_{2} \varphi\left(m_{2}, n\right) & & (R \text {-linearity in } M) \\
\varphi\left(m, r_{1} n_{1}+r_{2} n_{2}\right) & =r_{1} \varphi\left(m, n_{1}\right)+r_{2} \varphi\left(m, n_{2}\right) & & (R \text {-linearity in } N) \\
& \text { for all } m, m_{1}, m_{2} \in M, n, n_{1}, n_{2} \in N, r_{1}, r_{2} \in R .
\end{array}
$$

Prove that the tensor product $M \otimes_{R} N$ (viewed as an R-module) satisfies the following universal property. For any R-bilinear map $\varphi: M \times N \rightarrow L$ there is a unique R-linear map $\Phi: M \otimes_{R} N \rightarrow L$ that makes the following diagram commute.

(d) Conclude that there is a bijection between the set of R-bilinear maps $M \times N \rightarrow L$ and the set of R-linear maps $M \otimes_{R} N \rightarrow L$.
3. (a) Let M be a right R-module and N_{1}, \ldots, N_{k} a set of left R-modules. Prove that the tensor product distributes over direct sums, that is, prove that there is an isomorphism of groups defined by the map

$$
\begin{aligned}
M \otimes_{R}\left(N_{1} \oplus \cdots \oplus N_{k}\right) & \stackrel{\cong}{\leftrightarrows}\left(M \otimes_{R} N_{1}\right) \oplus \cdots \oplus\left(M \otimes_{R} N_{k}\right) \\
m \otimes\left(n_{1}, \ldots, n_{k}\right) & \longmapsto\left(m \otimes n_{1}, m \otimes n_{2}, \ldots, m \otimes n_{k}\right)
\end{aligned}
$$

Verify that if M is an (S, R)-bimodule, then this is an isomorphism of S-modules.
Hint: Dummit-Foote Chapter 10.4 Theorem 17.
Remark: A similar argument (which you need not verify) shows that

$$
\left(M_{1} \oplus \cdots \oplus M_{k}\right) \otimes_{R} N \stackrel{\cong}{\leftrightarrows}\left(M_{1} \otimes_{R} N\right) \oplus \cdots \oplus\left(M_{k} \otimes_{R} N\right) .
$$

(b) Conclude that if N is a left R-module, $R^{k} \otimes_{R} N \cong N^{k}$.
(c) Show that if $F(A) \cong \bigoplus_{A} R$ is the free R-module on a set A, and $F(B) \cong \bigoplus_{B} R$ is the free $R-$ module on the set B , then $F(A) \otimes_{R} F(B)$ is the free R-module on the set $A \times B$.
Remark: In particular, this proves our claim about tensor products of vector spaces!
(d) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as vector spaces over \mathbb{R}.
4. (a) Let D be a right R-module. Prove that this map is a (well-defined) additive covariant functor:

$$
\begin{aligned}
D \otimes_{R}-: R-\underline{\mathrm{Mod}} & \longrightarrow \underline{\mathrm{Ab}} \\
M & \longmapsto D \otimes_{R} M \\
{[\phi: M \rightarrow N] } & \longmapsto\left[\begin{array}{c}
\phi_{*}: D \otimes_{R} M \longrightarrow D \otimes_{R} N \\
\phi_{*}(d \otimes m)=d \otimes \phi(m)
\end{array}\right]
\end{aligned}
$$

(b) Let k be a field, and V a k-vector space. Prove that the functor $V \otimes_{k}-: k$-Vect $\longrightarrow k$-Vect is exact.
5. (Building toward a theory of Jordan Canonical Form: Part 1). Let V be the $\mathbb{C}[x]$-module

$$
V=\frac{\mathbb{C}[x]}{(x-\lambda)^{k}} \quad \text { for some } \lambda \in \mathbb{C} \text { and } k \in \mathbb{Z}_{>0}
$$

We write T to denote the \mathbb{C}-linear map $T: V \rightarrow V$ defined by multiplication by $x \in \mathbb{C}[x]$.
(a) Show that $\left\{(x-\lambda)^{k-1},(x-\lambda)^{k-2}, \cdots,(x-\lambda), 1\right\}$ is a basis for V.
(b) Write down the matrix for the action of T on V with respect to the ordered basis

$$
(x-\lambda)^{k-1}, \quad(x-\lambda)^{k-2}, \quad \cdots \quad(x-\lambda), \quad 1
$$

A matrix of this form is called a Jordan block with eigenvalue λ.
(c) Verify that λ is the only eigenvalue of this Jordan block, and that the associated eigenspace is 1-dimensional.
6. Bonus (Optional). (The functor $D \otimes_{R}-$ is right exact.) Let R be any ring, and D a right R-module.
(a) Show by example that the functor $D \otimes_{R}-: R-\underline{\operatorname{Mod}} \rightarrow \mathbb{Z}$ - Mod may not be an exact functor.
(b) Show that $D \otimes_{R}-$ is right exact. Hint: Dummit-Foote 10.5 Theorem 39.

7. Bonus (Optional).

(a) Let R be a ring and N a left R-module. Let $I \subseteq R$ be an ideal. Define the R-submodule $I N=\left\{a_{1} n_{1}+\cdots+a_{k} n_{k} \mid a_{i} \in I, n_{i} \in N\right\}$. Prove that

$$
R / I \otimes_{R} N \cong N / I N
$$

(i) using the universal property of the tensor product to construct an R-linear map and a two-sided inverse,
(ii) using the presentation

$$
0 \longrightarrow I \longrightarrow R \longrightarrow R / I \longrightarrow 0
$$

for R / I and the fact that the tensor product is right-exact.
(b) Use this result to compute the abelian group $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$ (as a product of cyclic groups) for any $n, m \in \mathbb{Z}$.
(c) Let k be a field and let $R=k[x, y]$. Give simple descriptions of the following R-modules, and determine their dimensions over k.

$$
\frac{R}{(x)} \otimes_{R} \frac{R}{(x-y)} \quad \frac{R}{(x)} \otimes_{R} \frac{R}{(x-1)} \quad \frac{R}{(y-1)} \otimes_{R} \frac{R}{(x-y)}
$$

