
Math 122 Homework #7 Due: Friday18 May 2018

Reading: Dummit–Foote Ch 11.5, 18.1, Fulton–Harris Ch 1.1–1.2.

Summary of definitions and main results

Definitions we’ve covered: kth tensor power T k(M), tensor algebra T ∗(M), kth symmetric power

Symk(M), symmetric algebra Sym∗(M), kth exterior power
∧k

M , exterior algebra
∧∗

M , group ring, (lin-
ear) representation, degree of a representation, faithful representation, trivial representation, permutation
representation, regular representation, homomorphism and isomorphism of representations, G-equivariant
map, intertwiner, minimal polynomial of a linear map

Main results: using right exactness to compute tensor products, construction & universal properties for
tensor, symmetric, and exterior powers and algebras, equivalent definitions of a group representation

Warm-Up Questions

1. Show that the following alternate definition of an R–algebra A is equivalent to the one from class.
Given a commutative ring R, an R–algebra A is an R–module A with a ring structure such that the
multiplication map A×A→ A is R–bilinear.

2. Let R be a commutative ring, and M and R–module.

(a) Verify that, if 2 is invertible in R, then the submodule

〈m1 ⊗m2 ⊗ · · · ⊗mk | mi = mj for some i 6= j〉 ⊆ T kM

defining the exterior power
∧k

M is equal to the submodule

〈m1 ⊗m2 ⊗ · · · ⊗mk − sign(σ)mσ(1) ⊗mσ(2) ⊗ · · · ⊗mσ(k) | σ ∈ Sk〉.

(b) Are these submodules the same when 2 is not invertible?

3. Let R be a commutative ring and M and R–module. Verify the universal properties for the R–modules

(a) Tk(M) (b) Symk(M) (c)

k∧
(M)

and for R–algebras
(d) T∗(M) (e) Sym∗(M)

4. Let G be a group and V an F-vector space. Show that the following are all equivalent ways to define a
(linear) representation of G on V .

i. A group homomorphism G→ GL(V ).

ii. A group action (by linear maps) of G on V .

iii. An F[G]–module structure on V .

5. Let R be a commutative ring. Show that the group ring R[Z] ∼= R[t, t−1]. Show that R[Z/nZ] ∼=
R[t]/〈tn − 1〉.What is the group ring R[Zn]? The group ring R[Z/3Z⊕ Z/3Z]?

6. Let φ : G→ GL(V ) be any group representation. What is the image of the identity element in GL(V )?

7. Compute the sum and product of (1 + 3e(1 2) + 4e(1 2 3)) and (4 + 2e(1 2) + 4e(1 3)) in the group ring Q[S3].

8. Let G be a group and R a commutative ring. Show that R[G] is commutative if and only if G is abelian.

9. Given any representation φ : G→ GL(V ), prove that φ defines a faithful representation of G/ ker(φ).
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10. (a) Find an explicit isomorphism T between the following two representations of S2.

S2 −→ GL(R2) S2 −→ GL(R2)

(1 2) 7−→
[
0 1
1 0

]
(1 2) 7−→

[
1 0
0 −1

]
Give a geometric description of the action and the bases for R2 associated to each matrix group.

(b) Prove that the following two representations of S2 are not isomorphic.

S2 −→ GL(R2) S2 −→ GL(R2)

(1 2) 7−→
[
0 1
1 0

]
(1 2) 7−→

[
−1 0
0 −1

]
11. (Linear algebra review.) Let A, B, C be linear maps V → V , with C invertible. Verify the following

properties of the trace.

(a) Trace(CAC−1) = Trace(A) (so trace does not depend on choice of basis or matrix representing A).

(b) Trace(cA+B) = cTrace(A) + Trace(B) for any scalar c.

(c) Trace(AB) = Trace(BA) but Trace(AB) 6= Trace(A)Trace(B) in general.

(d) Trace(A) = Trace(AT ).

(e) Trace(IdV ) = dim(V ).

(f) Trace(A) is the sum of the eigenvalues of A (with algebraic multiplicity).

(g) If A has characteristic polynomial pA(x) = xn + an−1x
n−1 + · · ·+ a0, then Trace(A) = an−1.

(h) If V = U ⊕W and U,W are stabilized by A, then Trace(A) = Trace(A|U ) + Trace(A|W ).

12. (Linear algebra review.)

(a) Define what it means for two matrices to be conjugate (or similar)

(b) What is the conjugacy class of the zero matrix? The identity matrix? A scalar matrix?

(c) Explain why two matrices are conjugate if and only if they represent the same linear map with
respect to different bases.

(d) Show that conjugate matrices have the same determinant.

(e) Show that (ABA−1)n = ABnA−1.

13. (Linear algebra review.) Let A : V → V be a linear map on a finite dimensional vector space V .

(a) Suppose A is a block diagonal matrix, ie, it has square matrices Ai (its blocks) on the diagonal:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An


(

eg.

[
1 0 0 0
0 2 5 0
0 3 4 0
0 0 0 4

]
has A1 = [1] ,A2 =

[
2 5
3 4

]
,A3 = [4]

)

Explain how the blocks of A correspond to a decomposition of V into a direct sum of subspaces
V = V1 ⊕ · · · ⊕ Vn where each Vi is invariant under the action of A. (The matrix A is sometimes
called the direct sum of its blocks A = A1 ⊕A2 ⊕ · · · ⊕An.)

(b) Conversely, explain why, if V decomposes into a direct sum of subspaces that are invariant under
A, then the corresponding matrix for A will be block diagonal. (What are the sizes of the blocks?)

(c) Observe that Trace(A) =Trace(A1) + · · ·+Trace(An), and Det(A) =Det(A1) · · ·Det(An).

(d) What is the product of two block diagonal matrices (assuming blocks of the same sizes)?

(e) Show that for any exponent p ∈ Z≥0, the matrix Ap is block diagonal with blocks Ap
1, . . . ,A

p
m.
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Assignment Questions

For this assignment, you may quote basic results from linear algebra (including facts about matrix inverses,
transpose, trace, and determinant) and basic facts about complex conjugation without proof.

1. Let R be a commutative ring and M an R–module.

(a) For any commutative ring R and R–module M , show that the R–module T ∗M :=
⊕∞

i=0M
⊗i has

the structure of an R–algebra.

(b) A similar proof shows that Sym∗M :=
⊕∞

i=0 Symi(M) and
∧∗

M :=
⊕∞

i=0

∧i
M are R–algebras.

You do not need to give a full proof, but verify that multiplication is well-defined for these spaces
(it is independent of representative of an equivalence class of elements in these quotients).

2. Let F be a field of characteristic zero and V a vector space over F with basis {x1, . . . , xn}.
(a) Let W be any vector space over F, and v1, . . . , vN elements of W . Prove that, to show that the

elements vi are linearly independent, it suffices to construct F–linear maps φi : W → F such that

φi(vj) =

{
1, i = j
0, i 6= j

(b) Verify that Symk(V ) is a vector space over F with basis given by the set of monomials in the
variables {x1, x2, . . . , xn} of total degree k. (Remark: There are

(
n+k−1
n−1

)
such monomials).

(c) Verify that
∧k

V is isomorphic to the F–vector space with a basis given by elements of the form
xi1 ∧ xi2 ∧ · · · ∧ xik with i1 < i2 < · · · < ik. (Remark: There are

(
n
k

)
such elements).

(d) Suppose that A : V → V is a diagonalizable linear map with eigenvalues λ1, λ2, . . . , λn (listed with
multiplicity). Compute the eigenvalues of the maps induced by A on T kV , Symk(V ), and ∧kV .

(e) Show that you can identify Sym∗V , and
∧∗

V as direct summands of T ∗V via the (split) maps

x1x2 · · ·xk 7−→
1

k!

∑
σ∈Sk

σ(x1⊗x2⊗· · ·⊗xk) and x1∧x2∧· · ·∧xk 7−→
1

k!

∑
σ∈Sk

sign(σ)σ(x1⊗x2⊗· · ·⊗xk)

(We are using the assumption that F has characteristic zero, so the integer k! is invertible in F.)

(f) Show that V ⊗F V ∼= Sym2(V )⊕ ∧2V .
Remark : If V has dimension at least 2, then V ⊗F V ⊗F V % Sym3(V )⊕ ∧3V .

3. (Building toward a theory of Jordan Canonical Form: Part 2). Let V be a C[x]–module that is
finite dimensional over C, where x acts on V by a C–linear map T . According to the structure theorem
for finitely generated modules over a PID, we can write

V ∼=
C[x](
p1(x)

) ⊕ C[x](
p2(x)

) ⊕ · · · ⊕ C[x](
pk(x)

)
for some monic polynomials pi(x) ∈ C[x] such that p1(x) divides p2(x), p2(x) divides p3(x), etc.

The monic polynomial pk(x) is called the minimal polynomial of T , and the product p1(x)p2(x) · · · pk(x)
is called the characteristic polynomial of T . By construction the minimal and characteristic polynomials
have the same set of roots (possibly with different multiplicities).

(a) Briefly explain why V can also be further decomposed as a direct sum

V ∼=
C[x]

(x− λ1)k1
⊕ C[x]

(x− λ2)k2
⊕ · · · ⊕ C[x]

(x− λd)kd

for (not necessarily distinct) scalars λi ∈ C and positive powers ki. Explain the relationship between
the scalars λi, the mulitplicities ki, and the polynomials pj(x). Hint: Chinese Remainder Theorem.

Page 3



Math 122 Homework #7 Due: Friday18 May 2018

(b) Conclude that the matrix T can be expressed as a block diagonal matrix, where each block is a
Jordan block. This is called the Jordan canonical form of T . Hint: Homework 6 Question #5.

(c) Suppose that µ ∈ C is not a root of pk(x) (and therefore not a root of pj(x) for any j). Show that µ
is not an eigenvalue of T . Conclude that the eigenvalues of T are precisely the roots of the minimal
polynomial pk(x).

Hint: Consider the projection of a µ–eigenspace onto the summand
C[x]

(x− λi)ki
for each i.

(d) Show that Ann(V ) =
(
pk(x)).

(e) Show that Ann(V ) is equal to the set

{anxn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ C[x] | anTn + an−1T

n−1 + · · ·+ a1T + a0I is the zero map}

(f) Conclude that if p(T ) = 0 for some polynomial p(x), every eigenvalue of T is a root of p(x).

(g) Show that T is diagonalizable if and only if the roots of its minimal polynomial pk(x) are distinct,
ie, they each occur with multiplicity one.

(h) (Application to representation theory.) Suppose the linear map T has finite order, that is,
Tn = I for some n ∈ Z≥0. Show that T is diagonalizable, and that every eigenvalue is an nth

root of unity. Use this result to conclude the following fact about complex representations of finite
groups: Let G be a finite group of order n, and let ρ : G → GL(V ) be a representation of G on a
finite dimensional C–vector space V . For every g ∈ G the linear map ρ(g) is diagonalizable, and its
eigenvalues are nth roots of unity.

4. Let G be a finite group, and F a field. You may use properties of the trace without proof.

(a) Let G→ GL(U) be any representation of G. Citing facts from linear algebra (which you don’t need
to prove), explain why the trace of the matrix representing a given element g ∈ G is well-defined in
the sense that it will be the same in any isomorphic representation of G.

(b) A permutation representation of G on a finite-dimensional F-vector space V is a linear representation
ρ : G→ GL(V ) in which elements act by permuting some basis B = {b1, . . . bm} for V . Show that,
with respect to the basis {b1, . . . , bm}, for each element g ∈ G, ρ(g) is represented by an m × m
permutation matrix, a square matrix that has exactly one entry 1 in each row and each column,
and zero elsewhere. Use this description of matrices ρ(g) to show that the trace of ρ(g) is equal to
the number of basis elements bi fixed by ρ(g).

(c) Our first example of a permutation representation was given by the action of Sn on Fn by permuting
the basis e1, . . . , en. Show, in contrast, that the subrepresentation

U = {a1e1 + a2e2 + · · ·+ anen | a1 + a2 + · · ·+ an = 0} ⊆ Fn

is not a permutation representation with respect to any basis for U .
Hint: Warm-up Question 11(h). What is the trace of an n–cycle?

(d) The group ring of F[G] is a left module over itself. This corresponds to permutation representation
of the group G on the underlying vector space F[G], called the (left) regular representation of G.
Find the degree of this representation. In what basis is this a permutation representation, and how
many G-orbits does this basis have?

(e) For any g ∈ G, compute the trace of the matrix representing g in the regular representation.

5. (Bonus) (The tensor-Hom adjunction.) Let S,R be rings. Let A be an (S,R)–bimodule, B a left
R–module, and C a left S–module. Prove that there is a (well-defined) isomorphism of abelian groups

HomS(A⊗R B,C)
∼=−→ HomR

(
B,HomS(A,C)

)
[
f : a⊗ b 7−→ f(a⊗ b)

]
7−→

[
b 7−→ [a 7−→ f(a⊗ b)]

]
It turns out that this bijection is natural, so the functors A⊗R − and HomS(A,−) are adjoints.
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