Reading: Dummit–Foote Ch 11.5, 18.1, Fulton–Harris Ch 1.1–1.2.

Summary of definitions and main results

Definitions we've covered: k^{th} tensor power $T^k(M)$, tensor algebra $T^*(M)$, k^{th} symmetric power $\operatorname{Sym}^k(M)$, symmetric algebra $\operatorname{Sym}^*(M)$, k^{th} exterior power $\bigwedge^k M$, exterior algebra $\bigwedge^* M$, group ring, (linear) representation, degree of a representation, faithful representation, trivial representation, permutation representation, regular representation, homomorphism and isomorphism of representations, *G*-equivariant map, intertwiner, minimal polynomial of a linear map

Main results: using right exactness to compute tensor products, construction & universal properties for tensor, symmetric, and exterior powers and algebras, equivalent definitions of a group representation

Warm-Up Questions

- 1. Show that the following alternate definition of an R-algebra A is equivalent to the one from class. Given a commutative ring R, an R-algebra A is an R-module A with a ring structure such that the multiplication map $A \times A \to A$ is R-bilinear.
- 2. Let R be a commutative ring, and M and R-module.
 - (a) Verify that, if 2 is invertible in R, then the submodule

 $\langle m_1 \otimes m_2 \otimes \cdots \otimes m_k \mid m_i = m_j \text{ for some } i \neq j \rangle \subseteq T^k M$

defining the exterior power $\bigwedge^k M$ is equal to the submodule

 $\langle m_1 \otimes m_2 \otimes \cdots \otimes m_k - \operatorname{sign}(\sigma) m_{\sigma(1)} \otimes m_{\sigma(2)} \otimes \cdots \otimes m_{\sigma(k)} \mid \sigma \in S_k \rangle.$

- (b) Are these submodules the same when 2 is not invertible?
- 3. Let R be a commutative ring and M and R-module. Verify the universal properties for the R-modules

(a)
$$T^k(M)$$
 (b) $\operatorname{Sym}^k(M)$ (c) $\bigwedge^{\kappa}(M)$

and for R-algebras

(d) $T^*(M)$ (e) $Sym^*(M)$

- 4. Let G be a group and V an \mathbb{F} -vector space. Show that the following are all equivalent ways to define a (linear) representation of G on V.
 - i. A group homomorphism $G \to \operatorname{GL}(V)$.
 - ii. A group action (by linear maps) of G on V.
 - iii. An $\mathbb{F}[G]$ -module structure on V.
- 5. Let R be a commutative ring. Show that the group ring $R[\mathbb{Z}] \cong R[t, t^{-1}]$. Show that $R[\mathbb{Z}/n\mathbb{Z}] \cong R[t]/\langle t^n 1 \rangle$. What is the group ring $R[\mathbb{Z}^n]$? The group ring $R[\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}]$?
- 6. Let $\phi: G \to \operatorname{GL}(V)$ be any group representation. What is the image of the identity element in $\operatorname{GL}(V)$?
- 7. Compute the sum and product of $(1+3e_{(12)}+4e_{(123)})$ and $(4+2e_{(12)}+4e_{(13)})$ in the group ring $\mathbb{Q}[S_3]$.
- 8. Let G be a group and R a commutative ring. Show that R[G] is commutative if and only if G is abelian.
- 9. Given any representation $\phi: G \to \operatorname{GL}(V)$, prove that ϕ defines a faithful representation of $G/\ker(\phi)$.

10. (a) Find an explicit isomorphism T between the following two representations of S_2 .

$$S_2 \longrightarrow \operatorname{GL}(\mathbb{R}^2) \qquad \qquad S_2 \longrightarrow \operatorname{GL}(\mathbb{R}^2)$$
$$(1\ 2) \longmapsto \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \qquad (1\ 2) \longmapsto \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

Give a geometric description of the action and the bases for \mathbb{R}^2 associated to each matrix group.

(b) Prove that the following two representations of S_2 are not isomorphic.

$$S_2 \longrightarrow \operatorname{GL}(\mathbb{R}^2) \qquad \qquad S_2 \longrightarrow \operatorname{GL}(\mathbb{R}^2)$$
$$(1\ 2) \longmapsto \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \qquad (1\ 2) \longmapsto \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$$

- 11. (Linear algebra review.) Let A, B, C be linear maps $V \to V$, with C invertible. Verify the following properties of the trace.
 - (a) $\operatorname{Trace}(CAC^{-1}) = \operatorname{Trace}(A)$ (so trace does not depend on choice of basis or matrix representing A).
 - (b) $\operatorname{Trace}(cA + B) = c\operatorname{Trace}(A) + \operatorname{Trace}(B)$ for any scalar c.
 - (c) $\operatorname{Trace}(AB) = \operatorname{Trace}(BA)$ but $\operatorname{Trace}(AB) \neq \operatorname{Trace}(A)\operatorname{Trace}(B)$ in general.
 - (d) $\operatorname{Trace}(A) = \operatorname{Trace}(A^T)$.
 - (e) $\operatorname{Trace}(\operatorname{Id}_V) = \dim(V).$
 - (f) $\operatorname{Trace}(A)$ is the sum of the eigenvalues of A (with algebraic multiplicity).
 - (g) If A has characteristic polynomial $p_A(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$, then $\operatorname{Trace}(A) = a_{n-1}$.
 - (h) If $V = U \oplus W$ and U, W are stabilized by A, then $\operatorname{Trace}(A) = \operatorname{Trace}(A|_U) + \operatorname{Trace}(A|_W)$.

12. (Linear algebra review.)

- (a) Define what it means for two matrices to be *conjugate* (or *similar*)
- (b) What is the conjugacy class of the zero matrix? The identity matrix? A scalar matrix?
- (c) Explain why two matrices are conjugate if and only if they represent the same linear map with respect to different bases.
- (d) Show that conjugate matrices have the same determinant.
- (e) Show that $(ABA^{-1})^n = AB^n A^{-1}$.

13. (Linear algebra review.) Let $A: V \to V$ be a linear map on a finite dimensional vector space V.

(a) Suppose A is a block diagonal matrix, i.e., it has square matrices \mathbf{A}_i (its blocks) on the diagonal:

$$A = \begin{bmatrix} \mathbf{A}_{1} & 0 & \cdots & 0\\ 0 & \mathbf{A}_{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \mathbf{A}_{n} \end{bmatrix} \qquad \qquad \begin{pmatrix} eg. \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 2 & 5 & 0\\ 0 & 3 & 4 & 0\\ 0 & 0 & 0 & 4 \end{bmatrix} \text{ has } \mathbf{A}_{1} = \begin{bmatrix} 1 \end{bmatrix}, \mathbf{A}_{2} = \begin{bmatrix} 2 & 5\\ 3 & 4 \end{bmatrix}, \mathbf{A}_{3} = \begin{bmatrix} 4 \end{bmatrix} \end{pmatrix}$$

Explain how the blocks of A correspond to a decomposition of V into a direct sum of subspaces $V = V_1 \oplus \cdots \oplus V_n$ where each V_i is invariant under the action of A. (The matrix A is sometimes called the *direct sum* of its blocks $A = \mathbf{A}_1 \oplus \mathbf{A}_2 \oplus \cdots \oplus \mathbf{A}_n$.)

- (b) Conversely, explain why, if V decomposes into a direct sum of subspaces that are invariant under A, then the corresponding matrix for A will be block diagonal. (What are the sizes of the blocks?)
- (c) Observe that $\operatorname{Trace}(A) = \operatorname{Trace}(\mathbf{A}_1) + \cdots + \operatorname{Trace}(\mathbf{A}_n)$, and $\operatorname{Det}(A) = \operatorname{Det}(\mathbf{A}_1) \cdots \operatorname{Det}(\mathbf{A}_n)$.
- (d) What is the product of two block diagonal matrices (assuming blocks of the same sizes)?
- (e) Show that for any exponent $p \in \mathbb{Z}_{>0}$, the matrix A^p is block diagonal with blocks $\mathbf{A}_p^p, \ldots, \mathbf{A}_m^p$.

Assignment Questions

For this assignment, you may quote basic results from linear algebra (including facts about matrix inverses, transpose, trace, and determinant) and basic facts about complex conjugation without proof.

- 1. Let R be a commutative ring and M an R-module.
 - (a) For any commutative ring R and R-module M, show that the R-module $T^*M := \bigoplus_{i=0}^{\infty} M^{\otimes i}$ has the structure of an R-algebra.
 - (b) A similar proof shows that $\operatorname{Sym}^* M := \bigoplus_{i=0}^{\infty} \operatorname{Sym}^i(M)$ and $\bigwedge^* M := \bigoplus_{i=0}^{\infty} \bigwedge^i M$ are *R*-algebras. You do not need to give a full proof, but verify that multiplication is well-defined for these spaces (it is independent of representative of an equivalence class of elements in these quotients).
- 2. Let \mathbb{F} be a field of characteristic zero and V a vector space over \mathbb{F} with basis $\{x_1, \ldots, x_n\}$.
 - (a) Let W be any vector space over \mathbb{F} , and v_1, \ldots, v_N elements of W. Prove that, to show that the elements v_i are linearly independent, it suffices to construct \mathbb{F} -linear maps $\phi_i : W \to \mathbb{F}$ such that

$$\phi_i(v_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

- (b) Verify that $\operatorname{Sym}^k(V)$ is a vector space over \mathbb{F} with basis given by the set of monomials in the variables $\{x_1, x_2, \ldots, x_n\}$ of total degree k. (*Remark:* There are $\binom{n+k-1}{n-1}$ such monomials).
- (c) Verify that $\bigwedge^k V$ is isomorphic to the \mathbb{F} -vector space with a basis given by elements of the form $x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_k}$ with $i_1 < i_2 < \cdots < i_k$. (*Remark:* There are $\binom{n}{k}$ such elements).
- (d) Suppose that $A: V \to V$ is a diagonalizable linear map with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ (listed with multiplicity). Compute the eigenvalues of the maps induced by A on T^kV , $\operatorname{Sym}^k(V)$, and $\wedge^k V$.
- (e) Show that you can identify Sym^{*}V, and $\bigwedge^* V$ as **direct summands** of T^*V via the (split) maps

$$x_1 x_2 \cdots x_k \longmapsto \frac{1}{k!} \sum_{\sigma \in S_k} \sigma(x_1 \otimes x_2 \otimes \cdots \otimes x_k) \quad \text{and} \quad x_1 \wedge x_2 \wedge \cdots \wedge x_k \longmapsto \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) \sigma(x_1 \otimes x_2 \otimes \cdots \otimes x_k)$$

(We are using the assumption that \mathbb{F} has characteristic zero, so the integer k! is invertible in \mathbb{F} .)

- (f) Show that $V \otimes_{\mathbb{F}} V \cong \operatorname{Sym}^2(V) \oplus \wedge^2 V$. *Remark*: If V has dimension at least 2, then $V \otimes_{\mathbb{F}} V \otimes_{\mathbb{F}} V \supsetneq g \operatorname{Sym}^3(V) \oplus \wedge^3 V$.
- 3. (Building toward a theory of Jordan Canonical Form: Part 2). Let V be a $\mathbb{C}[x]$ -module that is finite dimensional over \mathbb{C} , where x acts on V by a \mathbb{C} -linear map T. According to the structure theorem for finitely generated modules over a PID, we can write

$$V \cong \frac{\mathbb{C}[x]}{(p_1(x))} \oplus \frac{\mathbb{C}[x]}{(p_2(x))} \oplus \dots \oplus \frac{\mathbb{C}[x]}{(p_k(x))}$$

for some monic polynomials $p_i(x) \in \mathbb{C}[x]$ such that $p_1(x)$ divides $p_2(x)$, $p_2(x)$ divides $p_3(x)$, etc.

The monic polynomial $p_k(x)$ is called the *minimal polynomial* of T, and the product $p_1(x)p_2(x)\cdots p_k(x)$ is called the *characteristic polynomial* of T. By construction the minimal and characteristic polynomials have the same set of roots (possibly with different multiplicities).

(a) Briefly explain why V can also be further decomposed as a direct sum

$$V \cong \frac{\mathbb{C}[x]}{(x-\lambda_1)^{k_1}} \oplus \frac{\mathbb{C}[x]}{(x-\lambda_2)^{k_2}} \oplus \dots \oplus \frac{\mathbb{C}[x]}{(x-\lambda_d)^{k_d}}$$

for (not necessarily distinct) scalars $\lambda_i \in \mathbb{C}$ and positive powers k_i . Explain the relationship between the scalars λ_i , the multiplicities k_i , and the polynomials $p_j(x)$. *Hint:* Chinese Remainder Theorem.

- (b) Conclude that the matrix T can be expressed as a block diagonal matrix, where each block is a Jordan block. This is called the *Jordan canonical form* of T. *Hint:* Homework 6 Question #5.
- (c) Suppose that $\mu \in \mathbb{C}$ is not a root of $p_k(x)$ (and therefore not a root of $p_j(x)$ for any j). Show that μ is not an eigenvalue of T. Conclude that the eigenvalues of T are precisely the roots of the minimal polynomial $p_k(x)$.

Hint: Consider the projection of a μ -eigenspace onto the summand $\frac{\mathbb{C}[x]}{(x-\lambda_i)^{k_i}}$ for each *i*.

- (d) Show that $\operatorname{Ann}(V) = (p_k(x)).$
- (e) Show that Ann(V) is equal to the set

 $\{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{C}[x] \mid a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0 I \text{ is the zero map} \}$

- (f) Conclude that if p(T) = 0 for some polynomial p(x), every eigenvalue of T is a root of p(x).
- (g) Show that T is diagonalizable if and only if the roots of its minimal polynomial $p_k(x)$ are distinct, ie, they each occur with multiplicity one.
- (h) (Application to representation theory.) Suppose the linear map T has finite order, that is, $T^n = I$ for some $n \in \mathbb{Z}_{\geq 0}$. Show that T is diagonalizable, and that every eigenvalue is an n^{th} root of unity. Use this result to conclude the following fact about complex representations of finite groups: Let G be a finite group of order n, and let $\rho : G \to \operatorname{GL}(V)$ be a representation of G on a finite dimensional \mathbb{C} -vector space V. For every $g \in G$ the linear map $\rho(g)$ is diagonalizable, and its eigenvalues are n^{th} roots of unity.
- 4. Let G be a finite group, and \mathbb{F} a field. You may use properties of the trace without proof.
 - (a) Let $G \to GL(U)$ be any representation of G. Citing facts from linear algebra (which you don't need to prove), explain why the trace of the matrix representing a given element $g \in G$ is well-defined in the sense that it will be the same in any isomorphic representation of G.
 - (b) A permutation representation of G on a finite-dimensional F-vector space V is a linear representation $\rho: G \to \operatorname{GL}(V)$ in which elements act by permuting some basis $B = \{b_1, \ldots, b_m\}$ for V. Show that, with respect to the basis $\{b_1, \ldots, b_m\}$, for each element $g \in G$, $\rho(g)$ is represented by an $m \times m$ permutation matrix, a square matrix that has exactly one entry 1 in each row and each column, and zero elsewhere. Use this description of matrices $\rho(g)$ to show that the trace of $\rho(g)$ is equal to the number of basis elements b_i fixed by $\rho(g)$.
 - (c) Our first example of a permutation representation was given by the action of S_n on \mathbb{F}^n by permuting the basis e_1, \ldots, e_n . Show, in contrast, that the subrepresentation

$$U = \{a_1e_1 + a_2e_2 + \dots + a_ne_n \mid a_1 + a_2 + \dots + a_n = 0\} \subseteq \mathbb{F}^n$$

is not a permutation representation with respect to any basis for U. Hint: Warm-up Question 11(h). What is the trace of an n-cycle?

- (d) The group ring of $\mathbb{F}[G]$ is a left module over itself. This corresponds to permutation representation of the group G on the underlying vector space $\mathbb{F}[G]$, called the *(left) regular representation* of G. Find the degree of this representation. In what basis is this a permutation representation, and how many G-orbits does this basis have?
- (e) For any $g \in G$, compute the trace of the matrix representing g in the regular representation.
- 5. (Bonus) (The tensor-Hom adjunction.) Let S, R be rings. Let A be an (S, R)-bimodule, B a left R-module, and C a left S-module. Prove that there is a (well-defined) isomorphism of abelian groups

$$\operatorname{Hom}_{S}(A \otimes_{R} B, C) \xrightarrow{\cong} \operatorname{Hom}_{R}(B, \operatorname{Hom}_{S}(A, C))$$
$$\left[f : a \otimes b \longmapsto f(a \otimes b)\right] \longmapsto \left[b \longmapsto \left[a \longmapsto f(a \otimes b)\right]\right]$$

It turns out that this bijection is *natural*, so the functors $A \otimes_R -$ and $\operatorname{Hom}_S(A, -)$ are adjoints.