
Math 122 Homework #9 Due: Monday 4 June 2018

Reading: Fulton–Harris Ch 2.1–3.4.

Summary of definitions and main results

Definitions we’ve covered: class function, character, character table, the inner product 〈−,−〉G, induced
representations, generalized eigenspaces.

Main results: irreducible characters form a basis for the space of class functions, orthogonality relations,
Frobenius reciprocity.

Warm-Up Questions

1. Let G be a finite group and U an irreducible G–representation over C.

(a) Show that the G–representation V ∼= U ⊕U has infinitely many distinct direct sum decompositions
into two copies of U .

(b) Describe the C–vector space of G–equivariant maps HomC[G](U
⊕a, U⊕b).

(c) Which of the maps HomC[G](U
⊕a, U⊕b) are isomorphisms?

2. Suppose that G is a group with NG conjugacy classes, and H a group with NH conjugacy classes. Verify
that G×H has NGNH conjugacy classes.

3. Let G be a finite group and φ : G→ GL(V ) a G–representation over a field F with character χV : G→ F.
Prove that if V is 1-dimensional, then χV = φ. Show by example that if V is at least 2 dimensional, χV
may not be a group homomorphism.

4. Let G be a finite group. Verify that 〈−,−〉G satisfies that conjugate symmetry, linearity, and positive
definiteness properties that define an inner product.

5. Let G be a finite group.

(a) State the formula for the inner product on complex-valued class functions of G.

(b) Let U =
∑
i V
⊕ai
i andW =

∑
j V
⊕bj
j for distinct irreducible representations Vi. Compute 〈χW , χU 〉G.

(c) Explain why the following results about character theory hold.

(i) Characters of irreducible representations are orthonormal.

(ii) Characters of irreducible representations are linearly independent.

(iii) The number of irreducible representations is at most the number of conjugacy classes of G.

(iv) A G–representation V is irreducible if and only if 〈χV , χV 〉G = 1.

(v) A representation V is determined up to isomorphism by its character.

6. Let G be a finite group. Prove that a complex-valued class function on G is a character if and only if it
is a nonnegative integer linear combination of irreducible characters.

7. Let G be a finite group. Prove that the dimension of the space of class functions G→ F over F is equal
to the number of conjugacy classes of G.

8. Let G be a finite group. We saw in class that, as a module over itself, C[G] ∼=
⊕

i V
⊕ dimC(Vi)
i , where

{Vi} is a complete set of non-isomorphic irreducible representations of G. What is the multiplicity of
the trivial representation in C[G]? Find a basis for this subrepresentation.

9. Let G be a group, and V and U be irreducible complex representations of G.

(a) Show by example that U ⊗C V may or may not be an irreducible G–representation.

(b) Prove that if U is 1-dimensional, then U ⊗C V is an irreducible G–representation.
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10. Let G be a finite group.

(a) If φ : G → GL(V ) is a G–representation, prove that φ(g) : V → V is G–equivariant if and only if
φ(g) is central in φ(G).

(b) Let χ be an irreducible character of G. Prove that for every element g in the center of G, χ(g) =
ξχ(1), where ξ is a root of unity in C.

11. Recall the character table for the complex representations of the symmetric group S3.

(•)(•)(•) (••)(•) (• • •)
Trv 1 1 1
Alt 1 −1 1
Std 2 0 −1

(a) Let C3 denote the canonical permutation representation of S3. Compute the character of Alt⊗C Sym2C3.

(b) Use the character table to decompose Alt⊗C Sym2C3 as a sum of irreducible representations (in
the sense of finding the multiplicity of each irreducible representation in the decomposition).

(c) Verify that the orthogonality relations hold for this character table.

12. Find two non-isomorphic S3–representations that are the same dimension. Explain why dimension
is an isomorphism invariant of G–representations, but is not sufficient to distinguish non-isomorphic
representations.

13. For n ≥ 2, let Cn be the canonical permutation representation of Sn.

(a) Prove that 〈χCn , χCn〉Sn = 2.

(b) Use this result to conclude that the standard representation is irreducible for every n ≥ 2.

14. (a) Compute the character table of the cyclic group G = Z/4Z,

(b) Verify the orthogonality relations on the row and columns of the character table.

(c) Compute the character of
∧3 C[G], and determine its decomposition into irreducible characters.

15. Let G be a finite group and C be its character table (of all irreducible characters).

(a) Show that the “orthogonality of characters” result is equivalent to the statement that the matrix
C satisfies the relation CDCT = I for a certain diagonal matrix D. What is D?

(b) Conclude from this equation that CTC = D−1. Use this equation to derive the second orthogonality
result for characters.

(c) Explicitly verify the relations CDCT = I and CTC = D−1 for the character table for S3.

16. Prove that the character table is an invertible matrix.

17. Let G be a finite group and H a subgroup. Let e be the identity element of G.

(a) Show that IndGHC[H] ∼= C[G]. Note the special case IndG{e}C ∼= C[G].

(b) Consider the trivial action of H on C. Show that IndGHC is the permutation representation of G on
the set of cosets G/H.

18. Use Frobenius reciprocity to perform the following computations.

(a) Let C3 = {1, (123), (321)} ⊆ S3, and let V be the irreducible trivial C3–representation. Find the
decomposition of the induced S3–representation IndS3

C3
V into irreducible representations.

(b) Do the same for the irreducible C3–representation where (123) acts by mulitplication by e
2πi
3 .

(c) Let C2 = {1, (12)} ⊆ S3. Decompose the S3–representations induced from the trivial and the
nontrivial irreducible representations of C2.
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19. (Linear Algebra Review). Let V be a finite dimensional vector space over C. For a ∈ C, write a for
its complex conjugate. Recall that a Hermitian inner product on V is a function

〈−,−〉 : V × V → C

satisfying the following properties:

(1) (Conjugate symmetry)
〈x, y〉 = 〈y, x〉 ∀x, y ∈ V

(2) (Linearity in the first coordinate)

〈ax, y〉 = a〈x, y〉 and 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ∀x, y, z ∈ V, a ∈ C

(3) (Positive definiteness)

〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇒ x = 0 ∀x ∈ V

Observe that (1) and (2) imply that the Hermitian inner product is antilinear in the second coordinate:

〈x, ay〉 = a〈x, y〉 and 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 ∀x, y, z ∈ V, a ∈ C

Remark: Compared to the bilinear form (−,−) we studied when we defined dual spaces, the Hermitian
inner product 〈−,−〉 has the advantage that it is positive definite, but the disadvantage that it is not
linear in the second argument. These two definitions coincide when we work over R (instead of C).

(a) Suppose that there is set of vectors e1, e2, . . . , en in V that is orthonormal with respect to the inner
product 〈−,−〉. This means

〈ei, ej〉 =

{
1, i = j
0, i 6= j

Prove these vectors are linearly independent, and therefore form a basis for the space they span.
(NB: We can always use the Gram-Schmidt algorithm to construct an orthonormal basis for V .)

(b) Let v = a1e1 + · · · + anen and w = b1e1 + · · · + bnen be elements of V . Compute 〈v, w〉. Show in
particular that

〈v, ei〉 = ai and 〈v, v〉 = |a1|2 + |a2|2 + · · ·+ |an|2.

(c) Show that the function

|| − || : V −→ R≥0

||v|| =
√
〈v, v〉

defines a norm on V , and hence the function

d : V × V −→ R≥0

d(v, w) = ||v − w||

defines a metric on V .

(d) Suppose that v = a1e1 + · · ·+ anen for nonnegative integer coefficients ai. Show that

〈v, v〉 = a2
1 + a2

2 + · · ·+ a2
n,

and conclude that 〈v, v〉 = 1 if and only if v = ei for some i.

(e) Suppose you have a function 〈−,−〉 : V ×V → C which you know satisfies the conjugate-symmetry
and linearity properties of an inner product. Show that, if V has an basis that is orthonormal with
respect to the function, then it must be positive definite.
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Assignment Questions

1. (a) Let R be a commutative ring, and let S be an R–algebra. Given S–modules U, V,W , show that
there is an isomorphism of R–modules

HomS(V,U ⊕W ) ∼= HomS(V,U)⊕HomS(V,W )

A similar result (you don’t need to prove) is that there is an isomorphism of R–modules

HomS(V ⊕ U,W ) ∼= HomS(V,W )⊕HomS(U,W )

(b) Let {Vi} be a finite set of irreducible G–representations over C. Let

U =
⊕

V ⊕aii and W =
⊕

V
⊕bj
j for ai, bj ∈ Z≥0.

Compute dimC HomC[G](U,W ).

2. Let G be a finite group. In this question we will describe the ring structure on the group ring C[G]. Let
V1, . . . , Vk denote a complete list of non-isomorphic irreducible complex G–representations.

(a) The action of G on a representation V is equivalent to the data of a map of rings C[G]→ EndC(V ),

so we obtain a map of rings C[G]→
⊕k

i=1 EndC(Vi). Show that this map is injective.

(b) Conclude (by a dimension count) that there is an isomorphism of rings C[G] ∼=
⊕k

i=1 EndC(Vi)

3. (a) Compute the character table for the symmetric group S5 over C. Hint: Fulton–Harris Chapter 3.1.

(b) Let C5 denote the canonical permutation representation of S5. Use the character table to find the
decomposition of Sym2C5 into irreducible S5–representations.

4. (Induced representations) Suppose H ⊆ G are finite groups, and F is a field. Given a finite di-
mensional G–representation W , we can restrict the action of G to the action of H ⊂ G. The resulting
H–representation is denoted ResGHW . Observe that ResGHW

∼= W as F–vector spaces.

Conversely, given a finite dimensional group representation V of H over F (viewed as a F[H]–module),
we can construct a representation of G by extension of scalars. Since F[H] is a subring of F[G], we may
view F[G] as a right F[H]–module. Define a F[G]–module, called the induced representation IndGHV , by

IndGHV := F[G]⊗F[H] V.

(a) Cite properties of the tensor product to show that

IndGH(U ⊕ U ′) ∼= IndGHU ⊕ IndGHU
′ and IndGK(IndKHV ) ∼= IndGHV

for any representations U,U ′ of H or subgroups H ⊆ K ⊆ G.

(b) Let G/H be the set of left cosets of G in H, and let {σi} be a set of representatives of each coset.
Show that

F[G] ∼=
⊕

σi∈G/H

F[H]

as right F[H]–modules.

(c) Conclude that, as an abelian groups, IndGHV
∼=
⊕

σi∈G/H V.

(d) To promote this isomorphism of abelian groups to an isomorphism of F[G]–modules, we make the
following definition. For each coset representative σi we let σiV be an isomorphic copy of the F–
vector space V where we denote the element v by σiv. Prove that there is a F[G]–linear isomorphism

IndGHV
∼=

⊕
σi∈G/H

σiV

where g ∈ G acts on σiv by finding the unique h ∈ H and σj so that gσi = σjh, and then defining
g · (σiv) = σj(h · v).
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(e) Given an G–representation W and H–representation V , find the degrees of ResGHW and IndGHV .

(f) What representation is IndGHV when H is the trivial group and V ∼= F the trivial representation?

(g) (Universal property of induction) Prove that induction satisfies the following universal prop-
erty: If U is any representation of G, then any map of F[H]–modules φ : V → ResGHU can be
promoted uniquely to a map of F[G]–modules Φ : IndGHV → U making the following diagram
commute.

v
� // 1⊗ v

V

φ
&&

// IndGHV

∃!Φ
��
U

(h) (Ind-Res adjunction) Show moreover that every F[G]–module map IndGHV → U arises in this
way. Conclude that there is a natural identification of F–modules

HomF[H](V,ResGHU) ∼= HomF[G](IndGHV,U).

Remark: this is a special case of the tensor–Hom adjunction (Homework 7 Bonus Problem #5).

(i) (Frobenius Reciprocity) Conclude that for finite dimensional representations over C,

〈χResGHU
, χV 〉H = 〈χU , χIndGHV

〉G.

(j) Conclude in particular that if V and U are irreducible representations of H and G, respectively,
then the multiplicity of the C[H]–representation V in ResGHU is equal to the multiplicity of the
C[G]–representation U in IndGHV .

5. Bonus (optional). Let V be an irreducible complex representation of a finite group G, and let H be
an index-2 subgroup of G.

(a) Prove that ResGHV consists of either one or two irreducible H–representations. Prove moreover
that the second case occurs if and only if V ∼= V ⊗C U , where U is the 1-dimensional nontrivial
representation G→ G/H ∼= {±1} ⊆ GL(C).

(b) Suppose a group G has an abelian subgroup of index 2. Show that any irreducible representation
of G has degree at most 2.

(c) Conclude that each irreducible complex representation of a dihedral group must have degree 1 or 2.

6. Bonus (optional). Compute the character tables for the dihedral groups D5 (the symmetries of a
pentagon) and D6 (the symmetries of a hexagon).
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