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1. (a) (1 point) Define what it means for a ring R to be (left) Noetherian. You may use
any of our equivalent definitions.

A ring R is (left) Noetherian if every R–submodule of R (viewed as left module
over itself) is finitely generated.

(b) (3 points) Let R be the ring of continuous functions f : R → R under point-
wise addition and pointwise multiplication (not composition). Show that R is not
Noetherian.

Hint: For n ∈ Z≥0, consider In = {f ∈ R | f(x) = 0 for x > n} ⊆ R.

By Homework #3, we can prove that R is not Noetherian by showing that the
R–module R does not satisfy the ascending chain condition. Specifically, we will
show that

I0 ⊆ I1 ⊆ I2 ⊆ · · ·

is an ascending chain of ideals that does not stabilize.

Fix n. First, we claim that In is an ideal: Given functions f(x), g(x) ∈ In, and
r(x) ∈ R, we will check that f(x) + r(x)g(x) ∈ In. But for x > n,

f(x) + r(x)g(x) = 0 + r(x)0 = 0

as desired.

Next, to show that we have containment In ⊆ In+1, notice that if f(x) ∈ In, and
x > n+ 1 > n, then f(x) = 0, so f(x) ∈ In+1.

Finally, there exist continuous functions that are nonzero on (−∞, n+ 1) and zero
on [n+ 1,∞) such as the piecewise-linear function h(x) shown here:

xn n+1

h(x)

The function h(x) is contained in In+1 but not In, so we have strict containment
In & In+1. Therefore

I0 ⊆ I1 ⊆ I2 ⊆ · · ·

is an ascending chain of ideals that does not stabilize.
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2. Let R be an integral domain and M an R–module. Suppose that x1, . . . , xn is a maximal
(in cardinality) list of linearly independent elements in M . Let

N = Rx1 +Rx2 + · · ·+Rxn.

(a) (3 points) Prove that M/N is a torsion R–module, that is, for every m ∈ M/N
there is some nonzero r ∈ R so that rm = 0.

Let m be an element of M/N , and let m be any preimage of m in M under the
quotient map q : M →M/N .

Since the elements x1, . . . , xn are assumed to be a maximal list of linearly indepen-
dent elements, the list m,x1, . . . , xn is not linearly independent. Thus there are
some coefficients r, r1, r2, . . . , rn ∈ R, not all zero, so that

rm+ r1x1 + · · · rnxn = 0.

Observe that the coefficient r must be nonzero, or this equation would violate the
assumption that x1, x2, . . . , xn are linearly independent. We can write

rm = −r1x1 − r2x2 − · · · − rnxn,

which implies that rm ∈ N . Hence

q(rm) = rq(m) = rm is zero in the quotient M/N ,

and we conclude that m is a torsion element of M/N . Hence M/N is a torsion
module as claimed.

(b) (2 points) State an example of an integral domain R, R–module M , and elements
x1, . . . , xn as above such that the quotient M/N is nonzero.
No justification needed.

Possible example. Let R=M=Z. Since Z is cyclic, a maximal list of linearly
independent elements has just one element. Let x1 = 2 ∈ Z. Then {x1} is linearly
independent (since 2 ∈ Z is not torsion) but Z/2Z is nonzero.
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3. Let D,M,N be R–modules, and let φ : M → N be an R–linear map. Consider the
functor HomR(D,−) : R−Mod→ Ab.

(a) (1 point) State the definition of the induced map

φ∗ : HomR(D,M)→ HomR(D,N).

Given an R–linear map f : D → M , the
induced map φ∗ is defined by

φ∗(f) = φ ◦ f.

D

f

��

φ∗(f)=φ◦f

  
M

φ // N

(b) (2 points) Show that if φ is injective, then so is the induced map φ∗.

Suppose that f : D →M is an element in the kernel of φ∗, and our goal is to show
that f is the zero map. That f is in ker(φ∗) means that

φ∗(f) = φ ◦ f must be the zero map in HomR(D,N).

Hence, f(D) ⊆ ker(φ). But φ is injective by assumption, so f(D) = 0. We conclude
that f is the zero map, and so φ∗ is injective, as claimed.

(c) (2 points) State an example of nonzero Z–modules D,M,N and a Z–linear map
φ : M → N such that the map φ is not the zero map, but the induced map φ∗ is
the zero map. No justification needed.

Possible example. Let D = Z/2Z, M = Z⊕ Z/2Z, and N = Z. Define

φ : Z⊕ Z/2Z −→ Z
(a, b) 7−→ a

Any Z–linear map f : Z/2Z→ Z⊕Z/2Z must have image contained in the 2-torsion
subgroup Z/2Z ⊆ Z⊕Z/2Z, which is the kernel of φ. Hence φ∗(f) = φ◦f is always
the zero map for every f ∈ HomR(Z/2Z,Z⊕ Z/2Z).

Alternate example. Let D = Z/nZ, M = Z/mnZ, and N = Z/mZ and the map

φ : Z/mnZ −→ Z/mZ
a 7−→ a mod m

The map φ∗ is zero since any map D → M must have image contained in the
subgroup {0,m, 2m, 3m, . . . , (n− 1)m} ∈ Z/nmZ.
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4. Let C be a category with a zero object 0, and therefore zero morphisms (denoted by 0).
Let f : X → Y be a morphism. Define the cokernel of f to be an object Q along with
a morphism q : Y → Q such that q◦f = 0, that satisfies the following universal property.

Y

q

��
X

0 //

f

??

Q

Given any object Z and z : Y → Z satisfy-
ing z ◦ f = 0, there is a unique morphism
u making the following diagram commute.

Y

q

�� z

��

X

f

??

0 //

0 ..

Q

∃!u

��
Z

(a) (3 points) Prove that, if (Q, q) satisfying the universal property exist, then the uni-
versal property determines them uniquely up to unique isomorphism.

Suppose that (Q, q) and (Q′, q′) are both objects satisfying the universal property.
Then applying the universal property for Q and Q′, respectively, we obtain unique
maps u and u′, respectively, making the following diagrams commute. Our goal is
to show these uniquely determined maps are isomorphisms.

Y

q

�� q′

��

X

f

??

0 //

0
..

Q

∃!u

��
Q′

Y

q′

�� q

��

X

f

>>

0 //

0
..

Q′

∃!u′

��
Q

Next we apply the universal property to
the outer triangle of the commutative
diagram:

Y

q′

��
q

��

q′

��

X

f

>>

0 //

0

..

0

))

Q′

u′

��
Q

u

��
Q′

Both the map idQ′ : Q′ → Q′ and the
map u ◦ u′ : Q′ → Q′ make the diagram
commute.

Y

q′

�� q′





X

f

>>

0 //

0 11

Q′

u◦u′

��
idQ′

&&
Q′

The universal property states that there
is a unique map completing the diagram,
so we conclude u ◦ u′ = idQ′ . Reversing
the roles of Q′ and Q, the same argument
implies that u′ ◦ u = idQ. Thus u and u′

are isomorphisms, as claimed.
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(b) (3 points) Let C be the category of R–modules. Show that the object Y/f(X)
(along with the quotient map q : Y → Y/f(X)) satisfies the universal property,
and is therefore the cokernel of f . You may quote the Factor Theorem without
proof.

First observe that, for any x ∈ X, (q ◦ f)(x) = q(f(x)) = 0 by construction, so q ◦ f = 0
as required.

Now suppose we have a commutative diagram

Y

q

�� z

��

X

f

<<

0 //

0 ..

Y/f(X)

Z

Since z ◦ f = 0, it follows that f(X) is con-
tained in ker(z). Hence, by the Factor The-
orem, the map z factors uniquely through
the quotient Y/f(X). Specifically, the map

u : Y/f(X) −→ Z

a+ f(X) 7−→ z(a)

is well-defined and is the unique map sat-
isfying u ◦ q = z.

Y

q

�� z

��

Y/f(X)

∃!u

""
Z

Since u◦0 = 0, this map completes the dia-
gram. Thus we have found the unique map
u necessary to demonstrate that Y/f(X)
satisfies the universal property.

Y

q

�� z

��

X

f

<<

0 //

0 ..

Y/f(X)

u

""
Z
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