1. (Quantifier review). Let P be some mathematical assertion. Explain the difference between the statements

"For all $n \in \mathbb{N}$ there exists some $N \in \mathbb{N}$ such that P holds."

"There exists some $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, P holds."

In particular, interpret the following two statements. Re-phrase both statements in colloquial English, and explain why one statement is true and the other is false.

"For all $n \in \mathbb{N}$ there exists some $N \in \mathbb{N}$ such that n > N."

"There exists some $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, n > N."

- 2. (Functions review). Let X and Y be sets, and let $f: X \to Y$ be a function.
 - (a) Prove or give a counterexample: If $U, V \subseteq Y$ are disjoint, then $f^{-1}(U)$ and $f^{-1}(V)$ in X are disjoint.
 - (b) Prove or give a counterexample: If $U, V \subseteq X$ are disjoint, then f(U) and f(V) in Y are disjoint.
- 3. Let (X, d) be a metric space, and let $(a_n)_{n \in \mathbb{N}}$ be a sequence in X. Show that the following two definitions of convergence are equivalent.

Definition (Convergence to a_{∞}). The sequence $(a_n)_{n\in\mathbb{N}}$ converges to a_{∞} if for any $\epsilon > 0$, there is some N in \mathbb{N} such that $a_n \in B_{\epsilon}(x)$ for all $n \geq N$.

Definition (Convergence to a_{∞}). The sequence $(a_n)_{n\in\mathbb{N}}$ converges to a_{∞} if for any $\epsilon > 0$, there is some \tilde{N} in \mathbb{N} such that $a_n \in B_{\epsilon}(x)$ for all $n > \tilde{N}$.

- 4. Let (X, d) be a metric space. Suppose that $S \subseteq T \subseteq X$.
 - (a) Suppose that x is an accumulation point of S. Must x be an accumulation point of T? Give a proof or a counterexample.
 - (b) Suppose that x is an accumulation point of T. Must x be an accumulation point of S? Give a proof or a counterexample.
- 5. Let $A \subseteq \mathbb{R}$ be a nonempty bounded subset. Prove that its supremum $\sup(A)$ is either in the set A, or it is an accumulation point of A.
- 6. Let (X, d) be a metric space, and let $S \subseteq X$ be a sequentially compact subset.
 - (a) Show by example that not every subsequence of a sequence $(a_n)_{n\in\mathbb{N}}$ in S need necessarily converge.
 - (b) Prove that no subsequence of $(a_n)_{n\in\mathbb{N}}$ can converge to a point in $X\setminus S$.
- 7. Find an explicit homeomorphism bewteen the intervals (0,1) and $(1,\infty)$ with the Euclidean metric.

- 8. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $f: X \to Y$ be an open map. Prove or give a counterexample: Then f(C) is closed for every closed subset of X.
- 9. Let (X, \mathcal{T}) be a topological space.
 - (a) Suppose that (X, \mathcal{T}) is Hausdorff. Let $x \in X$. Show that the intersection of all open sets containing x is equal to $\{x\}$.
 - (b) Show that the converse statement does not hold. Specifically, suppose (X, \mathcal{T}) is a infinite set with the cofinite topology. Show that (X, \mathcal{T}) is not Hausdorff, but for any $x \in X$ the intersection of all open sets containing X is equal to $\{x\}$.
- 10. Let (X, d) be a metric space, and let \mathcal{B} be a basis for the topology \mathcal{T}_d induced by d.
 - (a) Let $S \subseteq X$ be a subset, and $s \in S$. Show that s is an interior point of S if and only if there is some element $B \in \mathcal{B}$ such that $s \in B$ and $B \subseteq S$.
 - (b) Deduce that $\mathring{S} = \bigcup_{B \in \mathcal{B}, B \subseteq S} B$.
- 11. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let \mathcal{B}_X be a basis for the topology on X, and \mathcal{B}_Y be a basis for the topology on Y. Prove or disprove: the set

$$\{ U \times V \mid U \in \mathcal{B}_X, V \in \mathcal{B}_Y \}$$

is a basis for the product topology $\mathcal{T}_{X\times Y}$.

12. Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , and (Z, \mathcal{T}_Z) be topological spaces. Let $f: Z \to X$ and $g: Z \to Y$ be continuous functions. Show that the function

$$\begin{aligned} f \times g : Z \to X \times Y \\ (f \times g)(z) &= (f(z), g(z)) \end{aligned}$$

is continuous with respect to the product topology on $X \times Y$.

- 13. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Prove or disprove the following statements.
 - (a) If X and Y both have the discrete topology, then the product topology on $X \times Y$ is the discrete topology.
 - (b) If X and Y both have the indiscrete topology, then the product topology on $X \times Y$ is the indiscrete topology.
- 14. Let X be a topological space with the indiscrete topology.
 - (a) Describe all closed subsets of X.
 - (b) Suppose X contains more than one point. Show that X is not metrizable.
 - (c) Show that X is compact.
 - (d) Show that X is path-connected and connected.

- (e) Show that any sequence in X converges to every point of X. Conclude in particular that X is sequentially compact.
- (f) Let $A \subseteq X$ be a proper subset. Show that the interior of A is \emptyset .
- (g) Let $A \subseteq X$ be a nonempty subset. Show that the closure of A is X.
- (h) Let $A \subseteq X$ be subset of X. When is it true that every point of X is an accumulation point of A? When is it true that every point of $X \setminus A$ is an accumulation point of A?
- 15. Recall that Sierpiński space \mathbb{S} is the set $\mathbb{S} = \{0,1\}$ with the topology $\{\emptyset, \{1\}, \{0,1\}\}$.
 - (a) Show that S is not Hausdorff and not regular.
 - (b) Consider \mathbb{R} with the Euclidean metric. Show that every continuous function $\mathbb{S} \to \mathbb{R}$ is constant.
 - (c) There are 4 possible functions $\mathbb{S} \to \mathbb{S}$. Determine which of these maps are continuous, and which are not continuous.
 - (d) Find all possible homeomorphisms $\mathbb{S} \to \mathbb{S}$.
 - (e) Show that S is path-connected and connected.
 - (f) Show that S and all of its subsets are compact.
 - (g) Show that every sequence in S converges to 0. Under what conditions will a sequence converge to 1?
 - (h) Find all possible bases for \mathbb{S} .
 - (i) Let (X, \mathcal{T}) be a topological space. Show that $U \subseteq X$ is open if and only if the following map is continuous.

$$\chi_U : X \longrightarrow \mathbb{S}$$

$$\chi_U(x) = \begin{cases}
1, & x \in U \\
0, & x \notin U.
\end{cases}$$

- 16. Let (X, \mathcal{T}) be a topological space, and let $A, B \subseteq X$. Suppose $A \cup B$ and $A \cap B$ are connected. Prove that if A and B are both closed or both open, then A and B are connected.
- 17. Let (X, \mathcal{T}) be a topological space, and let $A, B \subseteq X$.
 - (a) Show that $\mathring{A} \cup \mathring{B}$ is contained in the interior of $A \cup B$.
 - (b) Show by example that $\mathring{A} \cup \mathring{B}$ need not be equal to the interior of $A \cup B$.
- 18. Let (X, \mathcal{T}) be a compact topological space, and let $f : \mathbb{R} \to X$ be a continuous and closed map. Show that there exists $x \in X$ such that $f^{-1}(x)$ is infinite.
- 19. Let $X = \{0, 1, 2, 3\}$ be the topological space with the topology $\mathcal{T} = \{\emptyset, \{0, 1\}, \{2, 3\}, X\}$. Show that X is regular, but not Hausdorff.

- 20. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $f: X \to Y$ be a function. Prove that f is open if and only if $f(\mathring{A}) \subseteq f(\mathring{A})$ for all sets $A \subseteq X$.
- 21. Let (X, \mathcal{T}) be a topological space and let $A \subseteq B \subseteq X$. Prove that the subspace topology on A (as a subset of X) is the same as the subspace topology on A as a subset of B (with the subspace topology \mathcal{T}_B).
- 22. Let (X, \mathcal{T}) be a topological space and let $A \subseteq B \subseteq X$. Prove that A is compact as a subset of B (ie, with respect to the subspace topology \mathcal{T}_B on B) if and only if it is compact as a subset of X.
- 23. Let (X, \mathcal{T}_X) be a compact topological space, and let (Y, \mathcal{T}_Y) be a Hausdorff topological space. Let $f: X \to Y$ be a continuous map. Show that f is a closed map, that is, $f(C) \subseteq Y$ is closed whenever $C \subseteq X$ is closed.
- 24. **Definition (Adherent sets).** Let (X, \mathcal{T}_X) be a topological space, and let $A, B \subseteq X$. Then A and B are called adherent if

$$(A \cap \overline{B}) \cup (\overline{A} \cap B) \neq \emptyset.$$

- (a) Give examples of disjoint adherent subsets of \mathbb{R} (with the Euclidean metric).
- (b) Let (X, \mathcal{T}_X) be a topological space and $A, B, C \subseteq X$. Prove or give a counterexample: if A and B are adherent, and B and C are adherent, then A and C are adherent.
- (c) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $f: X \to Y$ be a continuous map. Prove that, if A and B are adherent subsets of X, then f(A) and f(B) are adherent subsets of Y.
- (d) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be Hausdorff topological spaces. Suppose that $f: X \to Y$ has the property that, whenever A and B are adherent subsets of X, then f(A) and f(B) are adherent subsets of Y. Prove that f is continuous.
- 25. **Definition (Dense subsets; nowhere dense subsets).** Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$. The subset A is called *nowhere dense* if the interior of \overline{A} is empty.
 - (a) Give an example of a subset of $\mathbb R$ that is dense, and a subset of $\mathbb R$ that is nowhere dense.
 - (b) Give an example of a subset of \mathbb{R} that is neither dense nor nowehere dense.
 - (c) Show that \mathbb{Q}^n is a dense subset of \mathbb{R}^n .
 - (d) Is there a nonempty topological space (X, \mathcal{T}) and subset $A \subseteq X$ that is both dense and nowhere dense?
 - (e) Let A be a dense subset of a topological space (X, \mathcal{T}) . Show that any open subset $U \subseteq X$ satisfies $\overline{U \cap A} = \overline{U}$.

- (f) Let (X, \mathcal{T}) be a topological space. Show that $A \subseteq X$ is nowhere dense if and only if $X \setminus \overline{A}$ is a dense open subset of X.
- (g) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $A \subseteq X$ be a dense subset. Suppose that Y is Hausdorff. Show that a continuous map $f: X \to Y$ is completely determined by its values on A.
- 26. **Definition (Equivalent Metrics).** Let X be a set. Two metrics d_1 and d_2 on X are called *equivalent* if they both induce the same topology on X.
 - (a) For a metric d on the set X, use the notation $B_r^d(x)$ to denote the open ball of radius r about a point x. Show that the metrics d_1 and d_2 are equivalent if and only if open balls "nest" in the following sense: for any point $x \in X$ and radius r > 0, there exist radii $r_1, r_2 > 0$ such that

$$B_{r_1}^{d_1}(x) \subseteq B_r^{d_2}(x)$$
 and $B_{r_2}^{d_2}(x) \subseteq B_r^{d_1}(x)$.

- (b) Prove that the metrics d_1 and d_2 are equivalent if and only if the identity function $(X, d_1) \to (X, d_2)$ on X and the identity function $(X, d_2) \to (X, d_1)$ are both continuous.
- (c) Suppose that, for each $x \in X$, there exist constants $\alpha, \beta > 0$ such that, for every point $y \in X$,

$$\alpha d_1(x,y) \le d_2(x,y) \le \beta d_1(x,y).$$

Show that d_1 and d_2 are equivalent metrics.

(d) Let (X, d) be a metric space. For fixed $\epsilon > 0$, define

$$d_{\epsilon}(x,y) = \frac{d(x,y)}{\epsilon}.$$

Prove that d_{ϵ} is a metric on X, and that it is equivalent to d.

(e) Let (X, d) be a metric space. Define

$$d_b(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Prove that d_b is a metric on X, and that it is equivalent to d.

(f) Prove that the following metrics are \mathbb{R}^2 are all equivalent.

$$d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

$$d_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max(|x_1 - x_2|, |y_1 - y_2|)$$

(In fact, the analogous metrics on \mathbb{R}^n are all equivalent).

- 27. **Definition (Closure Operator).** Given a set X, let $\mathcal{P}(X)$ denote the collection of all subsets of X. A closure operator on X is a function $C : \mathcal{P}(X) \to \mathcal{P}(X)$ obeying the following Kuratowski axioms:
 - 1. $A \subseteq C(A)$ for every subset $A \subseteq X$.
 - 2. C(A) = C(C(A)) for every subset $A \subseteq X$.
 - 3. $C(\emptyset) = \emptyset$
 - 4. $C(A \cup B) = C(A) \cup C(B)$ for every $A, B \subseteq X$.
 - (a) Let \mathcal{T}_X be any topology on X. Show that the function $A \mapsto \overline{A}$ is a closure operator.
 - (b) (Challenge). Let X be a set and C a closure operator on X. Prove that there exists a topology on X for which $C(A) = \overline{A}$ for all $A \subseteq X$, and that this topology is unique.
- 28. (Challenge.) Let (X, \mathcal{T}) be a Hausdorff topological space with the property that $X \setminus A$ is connected for every finite set A.
 - (a) Show that the configuration space of X

$$F_n(X) = \{(x_1, x_2, \dots, x_n) \mid x_i \neq x_j \text{ for every } i \neq j\}$$

is connected.

(b) Show that \mathbb{R} does not have this property, but that \mathbb{R}^n does have this property for all $n \geq 2$.