1. Let (X, d) be a metric space. Show that the function $D: X \times X \rightarrow \mathbb{R}$

$$
D(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

defines a new metric on X.
2. Let (X, d) be a metric space, and let $U \subseteq X$ be an open set. Prove that U is equal to a (possibly infinite) union of open balls of the form $B_{r}(x) \subseteq X$.
3. Let (X, d) be a metric space. Either prove the following statement, or provide (with proof) a counterexample: For $x_{0} \in X$ and $r>0$ in \mathbb{R}, the closure of the open ball $B_{r}\left(x_{0}\right)$ is the set $\left\{x \mid d\left(x_{0}, x\right) \leq 1\right\}$.
4. Let (X, d) be a metric space, and let $S \subseteq X$ be a set with no accumulation points. Prove that S is closed.
5. Consider the real numbers \mathbb{R} with the Euclidean metric. Let $S=(0,1) \subseteq \mathbb{R}$. Give a complete and rigorous proof of what the sets $\stackrel{S}{S}, \bar{S}$, and ∂S are.
6. Recall our definition of a bounded set:

Definition (Bounded subset.) Let (X, d) be a metric space. A subset $S \subseteq X$ is called bounded if there is some $x_{0} \in X$ and some $R \in \mathbb{R}$ with $R>0$ such that $S \subseteq B_{R}\left(x_{0}\right)$.
Let (X, d) be a metric space and let $S \subseteq X$ be a bounded set in X. Show that if x is any point of X, then there is some $\widetilde{R}>0$ such that $B_{\widetilde{R}}(x)$ contains S.
7. Let (X, d) be a metric space, and let $S \subseteq X$ be a finite subset of X. Give a rigorous proof that $S \ldots$
(a) is closed.
(b) is bounded.
(c) has no accumulation points.
8. Let (X, d) be a metric space, and let $S \subseteq X$ be a finite subset of X. Is it necessarily true that $\stackrel{\circ}{S}=\varnothing$?
9. Let A be a subset of a metric space. Starting from the definition of open and boundary (instead of quoting results from the homework), prove the following: If A is an open set, then

$$
A \cap \partial A=\varnothing
$$

10. Suppose that (X, d) is a metric space, and that $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are Cauchy sequences in X. Show that the sequence of real numbers $d\left(x_{n}, y_{n}\right)$ is a Cauchy sequence in \mathbb{R} (with the Euclidean metric).
11. Suppose that (X, d) is a metric space with the property that every bounded sequence converges. Prove that X is a single point.
12. Let X be a nonempty set, endowed with the discrete metric. Rigorously prove or disprove the following. Is X necessarily a complete metric space?
13. (a) Prove that \mathbb{R} with the Euclidean metric is a complete metric space.
(b) Prove that the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with the Euclidean metric is not a complete metric space.
(c) The function

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
f(x) & =\arctan (x)
\end{aligned}
$$

is continuous (which you do not need to prove). Use this function to show that the continuous image of a complete metric space need not be complete.
(d) Suppose that $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces, and that X a complete metric space. Suppose that $f: X \rightarrow Y$ is a continuous map satisfying

$$
d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right) \quad \text { for all } x_{1}, x_{2} \in X
$$

Show that $f(X)$ is a complete metric space.
14. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Recall from Homework 5 that $X \times Y$ is then a metric space with metric

$$
\begin{aligned}
d_{X \times Y}:(X \times Y) \times(X \times Y) & \longrightarrow \mathbb{R} \\
d_{X \times Y}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =\sqrt{d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2}} .
\end{aligned}
$$

(a) Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X converging to a point $x \in X$, and that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a sequence in Y converging to a point $y \in Y$. Prove that the sequence $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ in $X \times Y$ is convergent, and its limit is

$$
\lim _{n \in \mathbb{N}}\left(x_{n}, y_{n}\right)=(x, y)
$$

(b) Suppose that $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ in $X \times Y$ is a convergent sequence with

$$
\lim _{n \in \mathbb{N}}\left(x_{n}, y_{n}\right)=(x, y)
$$

Does it follow that the sequence $\left(x_{n}\right)_{n \in N}$ in X converges to x ?
(c) Prove that X and Y are sequentially compact if and only if $X \times Y$ is sequentially compact.
15. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define

$$
\begin{aligned}
d_{1}:(X \times Y) \times(X \times Y) & \longrightarrow \mathbb{R} \\
d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

(a) Show that d_{1} is a metric on $X \times Y$.
(b) Show that if $U \subseteq X$ and $V \subseteq Y$ are open sets, then $U \times V$ is an open subset of $X \times Y$.
16. Let X be a finite set (of, say, n elements), and let d be a metric on X. What is the topology \mathcal{T}_{d} on X induced by d ? Show in particular that this topology will be the same for every possible metric d.
17. Let X be a set, and suppose that \mathcal{T}_{1} and \mathcal{T}_{2} are two topologies on X.
(a) Show that the intersection $\mathcal{T}_{1} \cap \mathcal{T}_{2}$ is a topology on X.
(b) Show by example that the union $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ need not be a topology on X.
18. (a) Show that the following collection of subsets of \mathbb{R} forms a topology on \mathbb{R}.

$$
\mathcal{T}=\{\varnothing, \mathbb{R}\} \cup\{(b, \infty) \mid b \in \mathbb{R}\}
$$

(b) Determine whether the topology \mathcal{T} is metrizable.

