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You have 120 minutes to complete the exam. If you finish early, consider checking your work
for accuracy.

Jenny is available to answer questions.

Question Points Score

1 28

2 4

3 4

4 4

Total: 40



Math 490 Final Exam 19 December 2018

1. (28 points) For each of the following statements: if the statement is true, write “True”.
If the statement is not true, state a counterexample. No further justification needed.

(i) Let (X, d) be a metric space. Then the union of an arbitrary collection of closed
sets in X is closed.

(ii) Let (X, d) be a metric space, and S ⊆ X a finite set. Then S̊ = ∅.

(iii) Consider Z as a metric space with the Euclidean metric. Then every subset S ⊆ Z
is both open and closed.

(iv) Let A be a subset of a metric space (X, d), and let (an)n∈N be a sequence of points
in A that converges to an element a∞ ∈ X. Then a∞ ∈ A.

(v) Let A be a subset of a metric space (X, d). Then any element of ∂A must be both
an accumulation point of A, and an accumulation point of X \ A.

(vi) Let (X, T ) be a topological space, and let x ∈ X. Let (an)n∈N be the constant
sequence x x x x x · · · . Then (an)n∈N converges to x.

(vii) Let (X, T ) be a topological space, and let x, y be distinct points in X. Let (an)n∈N
be the sequence x y x y x y x y · · · . Then (an)n∈N does not converge.
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(viii) Let (X, T ) be a topological space, and let x ∈ X. Then the set {x} ⊆ X is closed.

(ix) Let (X, T ) be a topological space, and A ⊆ X a subset. Then X \ A = X \ A.

(x) Let (X, T ) be a topological space, and let S ⊆ X be a subset. If X is Hausdorff,
then the subspace topology on S is Hausdorff.

(xi) Let (X, T ) be a disconnected topological space. Then there is some proper nonempty
subset A ⊆ X that is both open and closed.

(xii) Let (X, T ) be a topological space, and let A ⊆ X be a subset. If A is connected,
then A is connected.

(xiii) Let A and B be nonempty subsets of R (with the Euclidean metric). If A∩B = ∅,
then A ∪B is disconnected.

(xiv) Let A and B be nonempty subsets of a topological space (X, T ). If A and B are
connected and A ∩B is nonempty, then A ∩B is connected.

Page 2 of 7 Please go on to the next page . . .



Math 490 Final Exam 19 December 2018

(xv) Suppose that (X, d) is a compact metric space. Then X is bounded.

(xvi) Let (X, T ) be a compact topological space. Then every closed subset of X is
compact.

(xvii) Let (X, T ) be a compact topological space. Then every compact subset of X is
closed in X.

(xviii) Consider [0, 1] with the Euclidean metric. Then any countably infinite subset
{ an | n ∈ N } ⊆ [0, 1] is compact.

(xix) Consider [0, 1] with the Euclidean metric. Then any countably infinite subset
{ an | n ∈ N } ⊆ [0, 1] is non-compact.

(xx) Let (X, dX) and (Y, dY ) be metric spaces, and let A ⊆ X and B ⊆ Y be compact
subsets. Then A×B is a compact subset of X × Y (with the product topology).

(xxi) Consider a Hausdorff topological space (Y, T ) and R with the Euclidean metric.
Let f : R → Y be a continuous function. Then f is completely determined by its
values on Q ⊆ R.
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(xxii) Let (X, dX) and (Y, dY ) be metric spaces, and f : X → Y a continuous function. If
B ⊆ X is bounded, then f(B) is bounded.

(xxiii) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. Let (an)n∈N be a sequence in X. If (an)n∈N converges, then the sequence
(f(an))n∈N in Y converges.

(xxiv) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If X has the discrete topology, then so does the subspace f(X) ⊆ Y .

(xxv) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If the subspace f(X) ⊆ Y has the discrete topology, then so does X.

(xxvi) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If X is path-connected, then f(X) is path-connected.

(xxvii) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If C ⊆ Y is compact, then f−1(C) is compact.

(xxviii) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If X is Hausdorff, then f(X) is Hausdorff.
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2. (4 points) Let (X, TX) be a topological space with basis B. Show that X is compact if
and only if every cover of X consisting of elements of B has a finite subcover.
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3. (4 points) Let (X, d) be a metric space with at least two elements. Show that there exist
nonempty open sets in X whose closures are disjoint.
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4. (4 points) Let (X, TX) be a topological space, and let X×X be a topological space with
the product topology TX×X . The set

∆ = { (x, x) | x ∈ X } ⊆ X ×X

is called the diagonal of X ×X. Prove that X is Hausdorff if and only if the diagonal
∆ is a closed subset of X ×X.
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