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1. (28 points) For each of the following statements: if the statement is true, write “True”.
If the statement is not true, state a counterexample. No further justification needed.

(i) Let (X, d) be a metric space. Then the union of an arbitrary collection of closed
sets in X is closed.

False. For example, let X = R with the Euclidean metric. A single point {x} ⊆ R
is closed, but the union (0, 1) =

⋃
x∈(0,1)

{x} in R is not closed.

(ii) Let (X, d) be a metric space, and S ⊆ X a finite set. Then S̊ = ∅.

False. For example, consider X = N with the discrete metric, and S ⊆ N any finite
nonempty set (say, S = {1, 2, 3}). Then S̊ = S is nonempty.

(iii) Consider Z as a metric space with the Euclidean metric. Then every subset S ⊆ Z
is both open and closed.

True.

(iv) Let A be a subset of a metric space (X, d), and let (an)n∈N be a sequence of points
in A that converges to an element a∞ ∈ X. Then a∞ ∈ A.

True.

(v) Let A be a subset of a metric space (X, d). Then any element of ∂A must be both
an accumulation point of A, and an accumulation point of X \ A.

False. For example, consider X = R with the Euclidean metric, and A = {1}.
Then ∂A = {1} but 1 is not an accumulation point of A.

(vi) Let (X, T ) be a topological space, and let x ∈ X. Let (an)n∈N be the constant
sequence x x x x x · · · . Then (an)n∈N converges to x.

True.

(vii) Let (X, T ) be a topological space, and let x, y be distinct points in X. Let (an)n∈N
be the sequence x y x y x y x y · · · . Then (an)n∈N does not converge.

False. For example, consider X = {x, y} with the indiscrete topology. Then the
sequence converges to both x and to y.
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(viii) Let (X, T ) be a topological space, and let x ∈ X. Then the set {x} ⊆ X is closed.

False. For example, consider X = {x, y} with the indiscrete topology. Then {x}
is not closed.

(ix) Let (X, T ) be a topological space, and A ⊆ X a subset. Then X \ A = X \ A.

False. For example, A = [0,∞) as a subset of X = R with the Euclidean metric.
Then 0 ∈ X \ A = (−∞, 0] but 0 /∈ X \ A = (−∞, 0).

(x) Let (X, T ) be a topological space, and let S ⊆ X be a subset. If X is Hausdorff,
then the subspace topology on S is Hausdorff.

True.

(xi) Let (X, T ) be a disconnected topological space. Then there is some proper nonempty
subset A ⊆ X that is both open and closed.

True.

(xii) Let (X, T ) be a topological space, and let A ⊆ X be a subset. If A is connected,
then A is connected.

True.

(xiii) Let A and B be nonempty subsets of R (with the Euclidean metric). If A∩B = ∅,
then A ∪B is disconnected.

False. For example, consider A = (−∞, 0) and B = [0,∞) as subsets of R with
the Euclidean metric. Then A and B are disjoint but A ∪B = R is connected.

(xiv) Let A and B be nonempty subsets of a topological space (X, T ). If A and B are
connected and A ∩B is nonempty, then A ∩B is connected.

False. For example, consider the follow-
ing two subsets of R2 (with the Euclidean
metric).

A

B
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(xv) Suppose that (X, d) is a compact metric space. Then X is bounded.

True.

(xvi) Let (X, T ) be a compact topological space. Then every closed subset of X is
compact.

True.

(xvii) Let (X, T ) be a compact topological space. Then every compact subset of X is
closed in X.

False. For example, consider the set X = {1, 2} with the indiscrete metric. Then
the set {1} is compact but not closed.

(xviii) Consider [0, 1] with the Euclidean metric. Then any countably infinite subset
{ an | n ∈ N } ⊆ [0, 1] is compact.

False. For example, the set {1, 1
2
, 1
3
, 1
4
, . . .} is not compact. (Since it does not

contain its accumulation point 0, it is not closed; compact subsets of R are closed
and bounded).

(xix) Consider [0, 1] with the Euclidean metric. Then any countably infinite subset
{ an | n ∈ N } ⊆ [0, 1] is non-compact.

False. For example, the set {0, 1, 1
2
, 1
3
, 1
4
, . . .} is compact (since it is a closed and

bounded subset of R).

(xx) Let (X, dX) and (Y, dY ) be metric spaces, and let A ⊆ X and B ⊆ Y be compact
subsets. Then A×B is a compact subset of X × Y (with the product topology).

True.

(xxi) Consider a Hausdorff topological space (Y, T ) and R with the Euclidean metric.
Let f : R → Y be a continuous function. Then f is completely determined by its
values on Q ⊆ R.

True.
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(xxii) Let (X, dX) and (Y, dY ) be metric spaces, and f : X → Y a continuous function. If
B ⊆ X is bounded, then f(B) is bounded.

False. For example, consider X = Y = (0,∞) in the Euclidean metric, and the
continuous map f : (0,∞) → (0,∞) given by f(x) = 1

x
. Then (0, 1) ⊆ (0,∞) is

bounded, but f
(

(0, 1)
)

= (1,∞) is not bounded.

(xxiii) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. Let (an)n∈N be a sequence in X. If (an)n∈N converges, then the sequence
(f(an))n∈N in Y converges.

True.

(xxiv) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If X has the discrete topology, then so does the subspace f(X) ⊆ Y .

False. Let X = R with the discrete topology and Y = R with the indiscrete
topology. Let f : X → Y be the identity map on R. Then f is continuous and X
has the discrete topology, but f(X) = R does not.

(xxv) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If the subspace f(X) ⊆ Y has the discrete topology, then so does X.

False. Let X = R with the Euclidean metric, and let Y = {0} be a single point.
Let f : X → Y be the constant map f(x) = 0. Then f(X) = Y = {0} has the
discrete topology, but X = R does not.

(xxvi) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If X is path-connected, then f(X) is path-connected.

True.

(xxvii) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If C ⊆ Y is compact, then f−1(C) is compact.

False. Let X = R with the Euclidean metric, and let Y = {0} be a single point.
Let f : X → Y be the constant map f(x) = 0. Then f is continuous, and C = {0}
is compact, but f−1(C) = R is not compact.

(xxviii) Let (X, TX) and (Y, TY ) be topological spaces, and f : X → Y a continuous func-
tion. If X is Hausdorff, then f(X) is Hausdorff.

False. Let X = N with the discrete topology and Y = N with the indiscrete
topology. Let f : X → Y be the identity map on N. Then f is continuous and X
is Hausdorff, but f(X) = Y is not Hausdorff.
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2. (4 points) Let (X, TX) be a topological space with basis B. Show that X is compact if
and only if every cover of X consisting of elements of B has a finite subcover.

Solution. First suppose that X is compact. Then any cover of X consisting of elements
of B is, in particular, an open cover. By definition of compactness, it must have a finite
subcover.

Now suppose conversely that X is a space with the property that every open cover of X
consisting of elements of B has a finite subcover. We wish to show that X is compact,
that is, any open cover of X has a finite subcover.

So let U be an open cover of X. By definition of a basis, each open set U ∈ U can be
written as a union of basis elements U = ∪i∈IUBi,U with Bi,U ∈ B. So consider the new
open cover

C = {Bi,U | U ∈ U , i ∈ IU}.

To see that C covers X, consider a point x ∈ X. Since U covers, x ∈ U for some U ∈ U .
But since U = ∪i∈IUBi,U , x ∈ Bi,U for some Bi,U . Hence C is an open cover of X.

Then, since C consists of basis elements, we know that it has some finite subcover,

Bi1,U1 , Bi2,U2 , . . . , Bin,Un .

This means that, for any x ∈ X, x ∈ Bij ,Uj
for some j. But Bij ,Uj

⊆ Uj, so every x ∈ X
is contained in Uj for some j. It follows that

U1, U2, . . . , Un

is a finite subcover of U . We conclude that X is compact, as claimed.
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3. (4 points) Let (X, d) be a metric space with at least two elements. Show that there exist
nonempty open sets in X whose closures are disjoint.

Solution. Suppose that X contains the two distinct elements x and y, and suppose
that d(x, y) = r. Then r > 0 by definition of a metric, and so the sets Bx = B r

4
(x) and

By = B r
4
(y) are open balls around x and y, respectively. We will show that these two

nonempty open sets have disjoint closure.

Suppose (for the sake of contradiction) that z were an element in Bx and By. This means
that every open neighbourhood Uz of z contains a point in Bx and contains a point in
By. So consider the open neighbourhood Uz = B r

4
(z).

By assumption this neighbourhood contains a point x̃ ∈ Bx.

x
x̃

z Br
4
(z)

Bx = Br
4
(x)

r
4

r
4

But then observe that

d(x, z) ≤ d(x, x̃) + d(x̃, z)

<
r

4
+

r

4
(since x̃ ∈ B r

4
(x) and x̃ ∈ B r

4
(z))

=
r

2

Since B r
4
(z) must also contain a point of By, the same argument shows that d(y, z) < r

2
.

But then

d(x, y) ≤ d(x, z) + d(z, y)

<
r

2
+

r

2
= r

which contradicts our premise that d(x, y) = r. Thus no such element z can exist, and
we conclude that Bx ∩By = ∅ as claimed.
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4. (4 points) Let (X, TX) be a topological space, and let X×X be a topological space with
the product topology TX×X . The set

∆ = { (x, x) | x ∈ X } ⊆ X ×X

is called the diagonal of X ×X. Prove that X is Hausdorff if and only if the diagonal
∆ is a closed subset of X ×X.

Solution. First, suppose that X is a Hausdorff space. To prove that ∆ is closed, we
must show that its complement is open. To prove that the complement is open, it suffices
to show that every point (x, y) in the complement of ∆ has some open neighbourhood
contained in the complement of ∆.

So let (x, y) be a point with (x, y) /∈ ∆. This means that x 6= y. But since X is
Hausdorff, by definition, it follows that there are disjoint open sets U and V with x ∈ U
and y ∈ V . We claim that U ×V is the desired open set containing (x, y) and contained
in the complement of ∆.

The set U × V is open in X × Y by definition of the product topology, and it contains
(x, y) by construction. Now, let (u, v) be any point in U × V . Then u ∈ U and v ∈ V .
Since U and V are disjoint, it follows that u 6= v, and so (u, v) /∈ ∆. This shows that
(U ×V )∩∆ = ∅, and so U ×V is contained in the complement of ∆ as claimed. Hence
∆ is closed.

Conversely, suppose that ∆ is closed. Let x and y be distinct elements of X. To show
that X is Hausdorff, we wish to find disjoint neighbourhoods about x and y. Since ∆
is closed, by definition, the complement (X × X) \ ∆ is open in the product topology.
Since the product topology is generated by sets of the form U ×V (with U, V ⊆ X both
open), we know that the element (x, y) ∈ (X ×X) \∆ must be contained in some open
set of the form U × V ⊆ (X ×X) \∆.

This means that U is an open neighbourhood of x, and V is an open neighbourhood of
y. Moreover, U and V must be disjoint, If not, if z ∈ U ∩ V , then (z, z) ∈ (U × V ) ∩∆
would contradict our assumption that U×V is contained in the complement of ∆. Thus,
X is Hausdorff as claimed.
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