1. (10 points) For each of the following, write down an example (if an example exists), or otherwise write "Does not exist". No further justification needed.
(a) A metric space (X, d), a subset $Y \subseteq X$ viewed as a metric space under the restriction of the metric d, and a subset $U \subseteq Y$ that is open as a subset of Y but not open as a subset of X.

Example: Let $X=\mathbb{R}$ with the Euclidean metric. Let $Y=\{1\}$. Let $U=Y=\{1\}$. Then U is open in Y, but not in \mathbb{R}.
(b) Metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a continuous function $f: X \rightarrow Y$, and an open set $U \subseteq Y$ such that $f^{-1}(U)$ is closed.

Example: Let X and Y both be \mathbb{R} (with the Euclidean metric). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the identity map. Take $U=\mathbb{R}$. Then U is open, and $f^{-1}(U)=\mathbb{R}$ is closed (as well as open).
(c) Metric spaces $\left(X, \underline{d_{X}}\right)$ and $\left(Y, d_{Y}\right)$, a continuous function $f: X \rightarrow Y$, and a set $A \subseteq X$ such that $f(\bar{A}) \nsubseteq \overline{f(A)}$.

Does not exist.
(d) A metric space (X, d) and a nonempty set $S \subseteq X$ such that S is open, and S has no accumulation points.

Example: Let $X=\{1\}$ be a single point. Then the set $S=X=\{1\}$ is open in X, but has no accumulation points.
(e) A nonempty set $S \subseteq \mathbb{R}$ (with the Euclidean metric) such that no point contained in S is an accumulation point of S, but S has an accumulation point $x \notin S$.

Example: Let $S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Then every point of S is an isolated point, but $0 \in \mathbb{R}$ is an accumulation point of S.
(f) A sequence of real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$ that is bounded but does not converge.

Example: The sequence $01010101010101010 \ldots$ is bounded but not convergent.
(g) A sequence of real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$ that converges but is not bounded.

Does not exist.

(h) A metric space (X, d), and a subset $S \subseteq X$ that is sequentially compact but not closed.

Does not exist.
(i) A metric space (X, d) that is not complete.

Example: The metric space $(0,1)$ with the Euclidean metric is not complete.
(j) A metric space (X, d) and a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in X such that $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is closed and bounded, but has no convergent subsequence.

Example: Let X be an infinite set and let d be the discrete metric on X. Then let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be any sequence such that each term a_{n} is a distinct element of X. Then $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is closed and bounded, but has no convergent subsequence.
2. (2 points) Either prove the following statement, or provide (with proof) a counterexample: Let (X, d) be a metric space, $A \subseteq X$ a subset, and $\left(a_{n}\right)_{n \in \mathbb{N}}$ a sequence of points in A that converge to a point a_{∞}. Then a_{∞} is an accumulation point of A.

Counterexample: Let \mathbb{R} be the real numbers. Let $A=\{5\}$. Then consider the constant sequence with $a_{n}=5$ for all n. The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is contained in A and converges to the point 5.

The point 5 is not, however, an accumulation point of A. Recall that, for 5 to be an accumulation point of A, every open ball of the form $B_{r}(5)$ must contain a point in A other than 5 . But consider the ball of radius (say) $r=1$ around 5 . There is no point of A in this ball except for 5 . We conclude that 5 is not an accumulation point of A.
3. (a) (2 points) Let (X, d) be a metric space, and let $x, y \in X$. Prove that there is an open set $U \subseteq X$ such that $x \in U$ but $y \notin U$.

Let x and y be distinct points of X. Then, by definition of a metric, the distance

$$
d(x, y)>0 .
$$

Let $r=\frac{1}{2} d(x, y)$. By construction $r>0$. Let

$$
U=B_{r}(x)=\{\tilde{x} \in X \mid d(x, \tilde{x})<r\} .
$$

We proved in class that U is open, and moreover that $x \in U$. However, because

$$
d(x, y)=2 r>r,
$$

the point y is not in U. This proves the claim.
(b) (1 point) Sierpinski space \mathbb{S} is the set $\{0,1\}$ with the topology $\{\varnothing,\{0\},\{0,1\}\}$. Prove that \mathbb{S} is not metrizable.

Observe that, among the list of three open sets in \mathbb{S}, there is no open set that contains the point 1 but not the point 0 . If \mathbb{S} were metrizable, this would contradict the conclusion of part (a). Hence, \mathbb{S} is not metrizable.
4. (5 points) Let (X, d) be a metric space, and let $a_{\infty} \in X$. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X with the property that every subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a subsequence that converges to a_{∞}. Prove that $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to a_{∞}.

We will prove the contrapositive: We will show that if $\left(a_{n}\right)_{n \in \mathbb{N}}$ does not converge to a_{∞}, then we can construct a subsequence $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ with the property that none of its (sub)subsequences converges to a_{∞}.
Recall that a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to a_{∞} if, for every $\epsilon>0$, there is some $N \in \mathbb{N}$ such that $a_{n} \in B_{\epsilon}\left(a_{\infty}\right)$ for all $n>N$. This means that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ fails to converge to a_{∞} if for some $\epsilon>0$, for every $N \in \mathbb{N}$ there is some $n>N$ so that $a_{n} \notin B_{\epsilon}\left(a_{\infty}\right)$.
Assume that $\left(a_{n}\right)_{n \in \mathbb{N}}$ does not converge, and choose such a value of $\epsilon>0$. It follows that there is some $n_{1} \in \mathbb{N}$ so that $a_{n_{1}} \notin B_{\epsilon}\left(a_{\infty}\right)$. But then, taking $N_{1}=n_{1}$, there is necessarily some $n_{2}>n_{1}$ so that $a_{n_{2}} \notin B_{\epsilon}\left(a_{\infty}\right)$. And, again, taking $N_{2}=n_{2}$, there is some $n_{3}>n_{2}$ such that $a_{n_{3}} \notin B_{\epsilon}\left(a_{\infty}\right)$. Continuing with this procedure, by induction, we obtain a subsequence $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ that has no terms contained in $B_{\epsilon}\left(a_{\infty}\right)$.
We will show that no subsequence of $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ converges to a_{∞}. Let $\left(a_{n_{i_{j}}}\right)_{j \in \mathbb{N}}$ be any (sub)subsequence of this subsequence. Consider the value $\epsilon>0$ as defined above. If $\left(a_{n_{i_{j}}}\right)_{j \in \mathbb{N}}$ converged to a_{∞}, then $a_{n_{i_{j}}}$ must be contained in $B_{\epsilon}\left(a_{\infty}\right)$ for infinitely many values of j. However, the terms $a_{n_{i_{j}}}$ by construction are not contained in $B_{\epsilon}\left(a_{\infty}\right)$ for any values of j. Thus, the subsequence does not converge to a_{∞}.
We conclude that a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ must converge to a_{∞} if it has the property that each of its subsequences has a (sub)subsequence converging to a_{∞}.

