Name: \qquad Score (Out of 8 points):

1. (a) (3 points) Let X be a set. State the definition of a metric on X.
(b) (3 points) Define a function

$$
d_{\infty}: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}
$$

as follows. For points $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}, let

$$
d_{\infty}(\bar{x}, \bar{y})=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|
$$

Prove that d_{∞} satisfies the triangle inequality.
(c) (2 points) In fact, d_{∞} defines a metric on \mathbb{R}^{n}. Draw and shade the open ball $B_{2}(0,0)$ of radius 2 about the origin $(0,0)$ in the metric space $\left(\mathbb{R}^{2}, d_{\infty}\right)$.

