Name: _____ Score (Out of 4 points):

Definition (proper maps). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f : X \to Y$ is called a *proper map* if $f^{-1}(K) \subseteq X$ is compact for every compact set $K \subseteq Y$.

1. (2 points) Consider the set \mathbb{R} with the Euclidean metric. Show that the constant map

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = 0$$

is continuous but not proper.

2. (2 points) Let (X, \mathcal{T}_X) be a compact topological space, and let (Y, \mathcal{T}_Y) be a Hausdorff topological space. Let $f: X \to Y$ be a continuous map. Show that f is proper.