Name: \qquad Score (Out of 8 points):

1. (a) (3 points) Let X be a set. State the definition of a metric on X.

A metric on X is a function

$$
d: X \times X \longrightarrow \mathbb{R}
$$

satisfying the following conditions.
(M1) (Positivity). $d(x, y) \geq 0$ for all $x, y \in X$, and $d(x, y)=0$ if and only if $x=y$.
(M2) (Symmetry). $d(x, y)=d(y, x)$ for all $x, y \in X$.
(M3) (Triangle inequality). $d(x, y)+d(y, z) \geq d(x, z)$ for all $x, y, z \in X$.
(b) (3 points) Define a function

$$
d_{\infty}: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}
$$

as follows. For points $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}, let

$$
d_{\infty}(\bar{x}, \bar{y})=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right| .
$$

Prove that d_{∞} satisfies the triangle inequality.

Let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{y}=\left(y_{1}, \ldots, y_{n}\right)$, and $\bar{z}=\left(z_{1}, \ldots, z_{n}\right)$ be points in \mathbb{R}^{n}. Our goal is to show that

$$
d(\bar{x}, \bar{z}) \leq d(\bar{x}, \bar{y})+d(\bar{y}, \bar{z})
$$

Observe that, for any fixed $j \in\{1,2, \ldots, n\}$,

$$
\left|x_{j}-y_{j}\right| \leq \max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|=d(\bar{x}, \bar{y}) .
$$

Moreover, from our proof that the Euclidean metric on \mathbb{R} satisfies the triangle inequality, we know that

$$
|a-c| \leq|a-b|+|b-c| \quad \text { for all } a, b, c \in \mathbb{R} \text {. }
$$

Hence, for any fixed j, we find

$$
\begin{aligned}
\left|x_{j}-z_{j}\right| & \leq\left|x_{j}-y_{j}\right|+\left|y_{j}-z_{j}\right| \\
& \leq d(\bar{x}, \bar{y})+d(\bar{y}, \bar{z}) .
\end{aligned}
$$

Since $\left|x_{j}-z_{j}\right| \leq d(\bar{x}, \bar{y})+d(\bar{y}, \bar{z})$ for every $j \in\{1,2, \ldots, n\}$, it follows that

$$
\begin{aligned}
d(\bar{x}, \bar{z}) & =\max _{i=1, \ldots, n}\left|x_{i}-z_{i}\right| \\
& \leq d(\bar{x}, \bar{y})+d(\bar{y}, \bar{z})
\end{aligned}
$$

which concludes the proof.
(c) (2 points) In fact, d_{∞} defines a metric on \mathbb{R}^{n}. Draw and shade the open ball $B_{2}(0,0)$ of radius 2 about the origin $(0,0)$ in the metric space $\left(\mathbb{R}^{2}, d_{\infty}\right)$.

By definition, this ball is all points $(x, y) \in \mathbb{R}^{2}$ with

$$
2>d((x, y),(0,0))=\max (|x-0|,|y-0|)=\max (|x|,|y|) .
$$

The "boundary" of the ball, the points that satisfy

$$
2=d((x, y),(0,0))=\max (|x-0|,|y-0|)=\max (|x|,|y|),
$$

will be points of the form $(2, y)$ or $(-2, y)$ with $-2 \leq y \leq 2$, or $(x, 2)$ or $(x,-2)$ with $-2 \leq x \leq 2$.

