1. (4 points) Let (X,d) be a metric space, and $A \subseteq X$ a subset. Prove that $\overline{X \setminus A} = X \setminus \mathring{A}$.

Quiz #4

2. (4 points) Consider the the real numbers \mathbb{R} with the Euclidean metric. For each of the following subsets $A \subseteq \mathbb{R}$, state the interior \tilde{A} and the closure \overline{A} . No justification necessary.

$$A = [-1, 1)$$

$$A = [-1, 1)$$
 $\mathring{A} = \underline{\qquad}$ $\overline{A} = \underline{\qquad}$

$$\overline{A} = \underline{\hspace{1cm}}$$

$$A = \mathbb{N} = \{1, 2, 3, \ldots\}$$

$$A = \mathbb{N} = \{1, 2, 3, \ldots\}$$
 $\mathring{A} = \underline{\qquad}$ $\overline{A} = \underline{\qquad}$

$$\overline{A} =$$

$$A = \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\}$$

$$A = \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\} \qquad \mathring{A} = \underline{\qquad} \qquad \overline{A} = \underline{\qquad}$$

$$\overline{A} =$$

$$A = \varnothing$$

$$A=\varnothing$$
 $\mathring{A}=$ _______

$$\overline{A} =$$