Name: _____ Score (Out of 8 points):

1. (4 points) Let (X,d) be a metric space, and $A \subseteq X$ a subset. Prove that $\overline{X \setminus A} = X \setminus \mathring{A}$.

Solution: To prove this equality, we will show that $\overline{X \setminus A} \subseteq X \setminus \mathring{A}$ and that $\overline{X \setminus A} \supseteq X \setminus \mathring{A}$.

First suppose $x \subseteq \overline{X \setminus A}$. This means that every neighbourhood U of x contains a point in $X \setminus A$. In other words, if U is a neighbourhood of x, then U contains at least one point not in A. In particular, every open ball $B_r(x)$ is a neighbourhood of x and therefore $B_r(x) \not\subseteq A$ for any r > 0. We conclude that x is not an interior point of A, hence $x \in X \setminus \mathring{A}$.

Now suppose that $x \in X \setminus \mathring{A}$. Let U be a neighbourhood of x. Since U is open by definition, there is some r > 0 such that $B_r(x) \subseteq U$. Because $x \notin \mathring{A}$ by assumption, x is not an interior point of A, and so no open ball centred on x can be contained in A. In particular, the ball $B_r(x)$ must contain a point $y \in X \setminus A$. But then $y \in B_r(x) \subseteq U$. We conclude that any neighbourhood U of x contains a point $y \in X \setminus A$, and hence that $x \in \overline{X \setminus A}$.

2. (4 points) Consider the the real numbers \mathbb{R} with the Euclidean metric. For each of the following subsets $A \subseteq \mathbb{R}$, state the interior \mathring{A} and the closure \overline{A} . No justification necessary.

$$A = \begin{bmatrix} -1, 1 \end{bmatrix} \qquad \qquad \mathring{A} = \underline{\qquad \qquad (-1, 1)} \qquad \qquad \overline{A} = \underline{\qquad \qquad [-1, 1]}$$

$$A = \mathbb{N} = \{1, 2, 3, \ldots\}$$
 $\mathring{A} = \underline{\hspace{1cm}} \varnothing$ $\overline{A} = \underline{\hspace{1cm}} \mathbb{N} = \{1, 2, 3, \ldots\}$

$$A = \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\} \qquad \mathring{A} = \underline{\qquad} \qquad \overline{A} = \underline{\qquad} \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\} \cup \{0\}$$

$$A=\varnothing$$
 $\mathring{A}=$ $\overline{A}=$ $\overline{A}=$