Name: \qquad Score (Out of 6 points):

1. (3 points) Suppose that (X, d) is a metric space, and that X is a finite set. Prove that X is sequentially compact.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in X. To show that X is sequentially compact, by definition, we must show that $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence.

Since X is finite, there must be some element $x \in X$ such that $a_{n}=x$ for infinitely many values of n. Hence, there must be some subsequence $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ such that $a_{n_{i}}=x$ for all $i \in \mathbb{N}$.

This subsequence converges to x : for any $\epsilon>0, a_{n_{i}}=x$ is contained in $B_{\epsilon}(x)$ for all $i \geq 1$.
2. (3 points) Recall that a sequence of real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$ is said to diverge to infinity if for every $R \in \mathbb{R}$, there is some $N \in \mathbb{N}$ so that $a_{n} \geq R$ for all $n \geq N$.

Suppose that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real numbers that diverges to infinity. Show that no subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real numbers that diverges to infinity, and let $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ be a subsequence. We will prove that this subsequence does not converge to any real number x.
So fix $x \in \mathbb{R}$, and let $\epsilon=1$. Choose $R=x+1$. Then, by assumption, there is an $N \in \mathbb{N}$ so that $a_{n} \geq R=x+1$ for every $n \geq N$.

In particular, whenever $i \geq N$, then $n_{i} \geq i \geq N$, and $a_{n_{i}} \geq x+1$. This means that $a_{n_{i}} \notin B_{1}(x)=(x-1, x+1)$ whenever $i \geq N$. We conclude that the subsequence does not converge to x.

Since x was an arbitrary real number, and $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ an arbitrary subsequence, we conclude that no subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges.

Page 2

