Name: _____ Score (Out of 6 points):

1. (3 points) Suppose that (X, d) is a metric space, and that X is a **finite** set. Prove that X is sequentially compact.

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of points in X. To show that X is sequentially compact, by definition, we must show that $(a_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Since X is finite, there must be some element $x \in X$ such that $a_n = x$ for infinitely many values of n. Hence, there must be some subsequence $(a_{n_i})_{i \in \mathbb{N}}$ such that $a_{n_i} = x$ for all $i \in \mathbb{N}$.

This subsequence converges to x: for any $\epsilon > 0$, $a_{n_i} = x$ is contained in $B_{\epsilon}(x)$ for all $i \ge 1$.

2. (3 points) Recall that a sequence of real numbers $(a_n)_{n \in \mathbb{N}}$ is said to diverge to infinity if for every $R \in \mathbb{R}$, there is some $N \in \mathbb{N}$ so that $a_n \geq R$ for all $n \geq N$.

Suppose that $(a_n)_{n\in\mathbb{N}}$ is a sequence of real numbers that diverges to infinity. Show that no subsequence of $(a_n)_{n\in\mathbb{N}}$ converges.

Let $(a_n)_{n \in \mathbb{N}}$ is a sequence of real numbers that diverges to infinity, and let $(a_{n_i})_{i \in \mathbb{N}}$ be a subsequence. We will prove that this subsequence does not converge to any real number x.

So fix $x \in \mathbb{R}$, and let $\epsilon = 1$. Choose R = x + 1. Then, by assumption, there is an $N \in \mathbb{N}$ so that $a_n \ge R = x + 1$ for every $n \ge N$.

In particular, whenever $i \ge N$, then $n_i \ge i \ge N$, and $a_{n_i} \ge x + 1$. This means that $a_{n_i} \notin B_1(x) = (x - 1, x + 1)$ whenever $i \ge N$. We conclude that the subsequence does not converge to x.

Since x was an arbitrary real number, and $(a_{n_i})_{i \in \mathbb{N}}$ an arbitrary subsequence, we conclude that no subsequence of $(a_n)_{n \in \mathbb{N}}$ converges.