Name: _____ Score (Out of 5 points):

1. (1 point) Let $X = \{a, b, c, d\}$. Let \mathcal{T} be the topology on X

 $\mathcal{T} = \{ \varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X \}.$

(You do not need to verify that this is a topology). What is the subspace topology \mathcal{T}_S induced on the subset $S = \{a, b, d\} \subseteq X$?

2. Suppose that (X, \mathcal{T}) is a topological space, and that $S \subseteq X$ a subset. Define a map

$$\begin{aligned} i: S \to X\\ i(s) = s. \end{aligned}$$

This map is called the *inclusion* of S into X.

(a) (2 points) Show that this map is continuous with respect to the topology \mathcal{T} on X and the subspace topology \mathcal{T}_S on S.

(b) (2 points) Suppose that S is an **open** set in the topological space X. Show that the map i is an open map. (Recall that this means that $i(V) \subseteq X$ is open for every open set $V \subseteq S$.)