Name: \qquad Score (Out of 6 points):

1. (3 points) Let $X=\{a, b, c, d\}$ be the topological space with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{b\},\{a, b\},\{b, c\},\{a, d\},\{a, b, c\},\{a, b, d\},\{a, b, c, d\}\} .
$$

Which of the following sets are bases for this topology? Circle all that apply.
No further justification necessary.
(i) $\mathcal{B}=\{\varnothing, X\}$
(iv) $\mathcal{B}=\{\{a\},\{b\},\{b, c\},\{a, d\}\}$
(ii) $\mathcal{B}=\{\{a\},\{b\},\{c\},\{d\}\}$
(v) $\mathcal{B}=\{\{a\},\{b\},\{a, b, c\},\{a, b, d\}\}$
(iii) $\mathcal{B}=\mathcal{T}$
(vi) $\mathcal{B}=\{\{a, b\},\{b, c\},\{a, d\}\}$
2. (3 points) Let (X, \mathcal{T}) be a topological space, and suppose that \mathcal{B} is a basis for this topology. Let $A \subseteq X$. Show that a point $x \in X$ is contained in A if and only if every basis element $B \in \mathcal{B}$ containing x contains a point of A.

Page 2

