Name: _____ Score (Out of 6 points):

1. (3 points) Let $X = \{a, b, c, d\}$ be the topological space with the topology

$$\mathcal{T} = \Big\{ \varnothing, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \Big\}.$$

Which of the following sets are bases for this topology? Circle all that apply. No further justification necessary.

- (i) $\mathcal{B} = \{\varnothing, X\}$ (iv) $\mathcal{B} = \{\{a\}, \{b\}, \{c\}, \{a, d\}\}$ (ii) $\mathcal{B} = \{\{a\}, \{b\}, \{c\}, \{d\}\}$ (v) $\mathcal{B} = \{\{a\}, \{b\}, \{a, b, c\}, \{a, b, d\}\}$ (iii) $\mathcal{B} = \mathcal{T}$ (vi) $\mathcal{B} = \{\{a, b\}, \{b, c\}, \{a, d\}\}$
- 2. (3 points) Let (X, \mathcal{T}) be a topological space, and suppose that \mathcal{B} is a basis for this topology. Let $A \subseteq X$. Show that a point $x \in X$ is contained in \overline{A} if and only if every basis element $B \in \mathcal{B}$ containing x contains a point of A.

Page 2