Name: \qquad Score (Out of 6 points):

1. (3 points) Let $X=\{a, b, c, d\}$ be the topological space with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{b\},\{a, b\},\{b, c\},\{a, d\},\{a, b, c\},\{a, b, d\},\{a, b, c, d\}\} .
$$

Which of the following sets are bases for this topology? Circle all that apply.
No further justification necessary.
(i) $\mathcal{B}=\{\varnothing, X\}$

These sets do not generate \mathcal{T}, for example, $\{a\}$ cannot be written as a union of elements of \mathcal{B}.
(ii) $\mathcal{B}=\{\{a\},\{b\},\{c\},\{d\}\}$

Basis elements must be open sets, and here $\{c\},\{d\} \notin \mathcal{T}$.
(iii) $\mathcal{B}=\mathcal{T}$
\mathcal{T} is always generated by \mathcal{T}.
(iv) $\mathcal{B}=\{\{a\},\{b\},\{b, c\},\{a, d\}\}$

These elements do form a basis: every set is open, and they generate \mathcal{T}. For example, $\{a, b, c\}$ is the union of basis elements $\{a\} \cup\{b, c\}$.
(v) $\mathcal{B}=\{\{a\},\{b\},\{a, b, c\},\{a, b, d\}\}$

These sets do not generate \mathcal{T}, for example, $\{a, d\}$ cannot be written as a union of elements of \mathcal{B}.
(vi) $\mathcal{B}=\{\{a, b\},\{b, c\},\{a, d\}\}$

These sets do not generate \mathcal{T}, for example, $\{a\}$ cannot be written as a union of elements of \mathcal{B}.
2. (3 points) Let (X, \mathcal{T}) be a topological space, and suppose that \mathcal{B} is a basis for this topology. Let $A \subseteq X$. Show that a point $x \in X$ is contained in \bar{A} if and only if every basis element $B \in \mathcal{B}$ containing x contains a point of A.

First, suppose that $x \in \bar{A}$. By definition, this means that every open neighbourhood U of x will contain a point of A. In particular, any open neighbourhood of x contained in \mathcal{B} must contain a point of A.
Conversely, suppose that $x \in X$ has the property that every element of $B \in \mathcal{B}$ containing x also contains a point of A. Let U be any open neighbourhood of x; we must show that U contains a point of A. Because \mathcal{B} is a basis for the topology, we can write U as a union of basis elements $U=\cup_{i \in I} B_{i}$, with $B_{i} \in \mathcal{B}$. Since $x \in U$, there must be some index i such that $x \in B_{i}$. But then by assumption B_{i} contains some element $a \in A$. So $a \in B_{i} \subseteq U$, and we conclude that U contains a point of A, as desired.

Page 2

