Score (Out of 6 points): Name:

1. (3 points) Let $X = \{a, b, c, d\}$ be the topological space with the topology

 $\mathcal{T} = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \}.$

Which of the following sets are bases for this topology? Circle all that apply. No further justification necessary.

- (i) $\mathcal{B} = \{\emptyset, X\}$ (iv)) $\mathcal{B} = \{\{a\}, \{b\}, \{b, c\}, \{a, d\}\}$ These sets do not generate \mathcal{T} , for example, $\{a\}$ cannot be written as a union of elements of \mathcal{B} .
- (ii) $\mathcal{B} = \{\{a\}, \{b\}, \{c\}, \{d\}\}$ Basis elements must be open sets, and here $\{c\}, \{d\} \notin \mathcal{T}$.
- $\mathcal{B} = \mathcal{T}$ (iii) \mathcal{T} is always generated by \mathcal{T} .

These elements do form a basis: every set is open, and they generate \mathcal{T} . For example, $\{a, b, c\}$ is the union of basis elements $\{a\} \cup \{b, c\}.$

- (v) $\mathcal{B} = \{\{a\}, \{b\}, \{a, b, c\}, \{a, b, d\}\}$ These sets do not generate \mathcal{T} , for example, $\{a, d\}$ cannot be written as a union of elements of \mathcal{B} .
- (vi) $\mathcal{B} = \{\{a, b\}, \{b, c\}, \{a, d\}\}$ These sets do not generate \mathcal{T} , for example, $\{a\}$ cannot be written as a union of elements of \mathcal{B} .
- 2. (3 points) Let (X, \mathcal{T}) be a topological space, and suppose that \mathcal{B} is a basis for this topology. Let $A \subseteq X$. Show that a point $x \in X$ is contained in A if and only if every basis element $B \in \mathcal{B}$ containing x contains a point of A.

First, suppose that $x \in \overline{A}$. By definition, this means that every open neighbourhood U of x will contain a point of A. In particular, any open neighbourhood of x contained in \mathcal{B} must contain a point of A.

Conversely, suppose that $x \in X$ has the property that every element of $B \in \mathcal{B}$ containing x also contains a point of A. Let U be any open neighbourhood of x; we must show that U contains a point of A. Because \mathcal{B} is a basis for the topology, we can write U as a union of basis elements $U = \bigcup_{i \in I} B_i$, with $B_i \in \mathcal{B}$. Since $x \in U$, there must be some index i such that $x \in B_i$. But then by assumption B_i contains some element $a \in A$. So $a \in B_i \subseteq U$, and we conclude that U contains a point of A, as desired.

Page 2