Name: \qquad Score (Out of 5 points):

1. (2 points) Let $X=\{a, b, c, d\}$ be a topological space with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{a, b\},\{a, b, c\},\{a, b, c, d\}\}
$$

Write down a formula for a continuous path in X from a to d. No justification necessary.

We seek a function $\gamma:[0,1] \rightarrow X$ with the property that

$$
\gamma(0)=a, \quad \gamma(1)=d, \quad \gamma^{-1}(\{a\}), \gamma^{-1}(\{a, b\}), \gamma^{-1}(\{a, b, c\}) \text { are open. }
$$

One such function is the following:

$$
\begin{aligned}
\gamma:[0,1] & \longrightarrow X \\
\gamma(t) & = \begin{cases}a, & t \in\left[0, \frac{1}{8}\right), \\
b, & t \in\left[\frac{1}{8}, \frac{1}{4}\right), \\
c, & t \in\left[\frac{1}{4}, \frac{1}{2}\right), \\
d, & t \in\left[\frac{1}{2}, 1\right]\end{cases}
\end{aligned}
$$

Then

$$
\begin{gathered}
\gamma^{-1}(\varnothing)=\varnothing, \quad \gamma^{-1}(\{a\})=\left[0, \frac{1}{8}\right), \quad \gamma^{-1}(\{a, b\})=\left[0, \frac{1}{4}\right), \\
\gamma^{-1}(\{a, b, c\})=\left[0, \frac{1}{2}\right), \quad \gamma^{-1}(\{a, b, c, d\})=[0,1]
\end{gathered}
$$

are all open sets in $[0,1]$, so the function is continuous as desired.
2. (3 points) Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces, and $f: X \rightarrow Y$ a continuous function. Show that, if X is path-connected, then $f(X)$ is path-connected.

Let y_{0} and y_{1} be any two points in $f(X)$. To show that $f(X)$ is path-connected, we must show that there exists a path $\gamma:[0,1] \rightarrow f(X)$ such that $\gamma(0)=y_{0}$ and $\gamma(1)=y_{1}$.

Since y_{0} and y_{1} are in the image of f by assumption, there must exist points x_{0} and x_{1} in X such that $f\left(x_{0}\right)=y_{0}$ and $f\left(x_{1}\right)=y_{1}$. Since X is path-connected, there exists a path $\widetilde{\gamma}:[0,1] \rightarrow X$ with $\widetilde{\gamma}(0)=x_{0}$ and $\widetilde{\gamma}(1)=x_{1}$.
Let $\gamma=f \circ \widetilde{\gamma}$. The map γ must be continuous, since both f and $\widetilde{\gamma}$ are continuous. Moreover,

$$
\gamma(0)=f \circ \widetilde{\gamma}(0)=f\left(x_{0}\right)=y_{0} \quad \text { and } \quad \gamma(1)=f \circ \widetilde{\gamma}(1)=f\left(x_{1}\right)=y_{1} .
$$

Thus γ is the desired path, and we conclude that $f(X)$ is path-connected.

Page 2

