Name: ______ Score (Out of 5 points):

1. (2 points) Let $X = \{a, b, c, d\}$ be a topological space with the topology

$$\mathcal{T} = \Big\{\varnothing, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,c,d\}\Big\}.$$

Write down a formula for a continuous path in X from a to d. No justification necessary.

We seek a function $\gamma:[0,1]\to X$ with the property that

$$\gamma(0) = a, \qquad \gamma(1) = d, \qquad \gamma^{-1}(\{a\}), \gamma^{-1}(\{a,b\}), \gamma^{-1}(\{a,b,c\}) \text{ are open.}$$

One such function is the following:

$$\gamma: [0,1] \longrightarrow X$$

$$\gamma(t) = \begin{cases} a, & t \in [0, \frac{1}{8}), \\ b, & t \in [\frac{1}{8}, \frac{1}{4}), \\ c, & t \in [\frac{1}{4}, \frac{1}{2}), \\ d, & t \in [\frac{1}{2}, 1] \end{cases}$$

Then

$$\begin{split} \gamma^{-1}(\varnothing) &= \varnothing, \qquad \gamma^{-1}(\{a\}) = \left[0,\frac{1}{8}\right), \qquad \gamma^{-1}(\{a,b\}) = \left[0,\frac{1}{4}\right), \\ \gamma^{-1}(\{a,b,c\}) &= \left[0,\frac{1}{2}\right), \qquad \gamma^{-1}(\{a,b,c,d\}) = [0,1] \end{split}$$

are all open sets in [0,1], so the function is continuous as desired.

2. (3 points) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f: X \to Y$ a continuous function. Show that, if X is path-connected, then f(X) is path-connected.

Let y_0 and y_1 be any two points in f(X). To show that f(X) is path-connected, we must show that there exists a path $\gamma: [0,1] \to f(X)$ such that $\gamma(0) = y_0$ and $\gamma(1) = y_1$.

Since y_0 and y_1 are in the image of f by assumption, there must exist points x_0 and x_1 in X such that $f(x_0) = y_0$ and $f(x_1) = y_1$. Since X is path-connected, there exists a path $\widetilde{\gamma} : [0,1] \to X$ with $\widetilde{\gamma}(0) = x_0$ and $\widetilde{\gamma}(1) = x_1$.

Let $\gamma = f \circ \widetilde{\gamma}$. The map γ must be continuous, since both f and $\widetilde{\gamma}$ are continuous. Moreover,

$$\gamma(0) = f \circ \widetilde{\gamma}(0) = f(x_0) = y_0$$
 and $\gamma(1) = f \circ \widetilde{\gamma}(1) = f(x_1) = y_1$.

Thus γ is the desired path, and we conclude that f(X) is path-connected.