Review Problems

- 1. (a) Let (X, \mathcal{T}_X) be a Hausdorff topological space, and let x_1, \ldots, x_n be a finite collection of points in X. Show that there are open sets U_1, \ldots, U_n such that $x_i \in U_i$, and which are pairwise disjoint (this means $U_i \cap U_j = \emptyset$ for all $i \neq j$).
 - (b) Let X be a **finite** set with a topology \mathcal{T}_X . Prove that if \mathcal{T}_X is Hausdorff, then \mathcal{T}_X is the discrete topology.
- 2. Let X be a set. Show that $\mathcal{B} = \{ \{x\} \mid x \in X \}$ is a basis for the discrete topology \mathcal{T} on X.
- 3. Let (X, \mathcal{T}) be a topological space. Show that a set \mathcal{B} is a basis for \mathcal{T} if and only if it satisfies the following property: For every open set $U \in \mathcal{T}$, and every $x \in U$, there exists some element $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.
- 4. Let (X, \mathcal{T}_X) be a topological space, and suppose that the topology \mathcal{T}_X is induced by a metric d on X. Let $S \subseteq X$. Show that the subspace topology \mathcal{T}_S is equal to the topology on S induced by restricting the metric d to S.
- 5. Let (X, \mathcal{T}) be a topological space with basis \mathcal{B} . Suppose that $S \subseteq X$ is a subset, and consider S as a topological space with the induced subspace topology \mathcal{T}_S . Prove that $\mathcal{B}_S = \{B \cap S \mid B \in \mathcal{B}\}$ is a basis for \mathcal{T}_S .
- 6. Let (X, \mathcal{T}) be a topological space with basis \mathcal{B} . Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X. Show that this sequence converges to a point a_{∞} if and only if, for every set $B \in \mathcal{B}$ containing a_{∞} , there is some $N \in \mathbb{N}$ so that $a_n \in B$ for all $n \geq N$.
- 7. Let (X, \mathcal{T}) be a topological space with basis \mathcal{B} . Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let \mathcal{B} be a basis for \mathcal{T}_X . Prove that a map $f: X \to Y$ is open if and only if f(B) is open for every $B \in \mathcal{B}$.
- 8. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let \mathcal{B}_X be a basis for \mathcal{T}_X , and let \mathcal{B}_Y be a basis for \mathcal{T}_Y . Show that the set

$$\mathcal{B}_{X\times Y} = \{ B_X \times B_Y \mid B_X \in \mathcal{B}_X, B_Y \in \mathcal{B}_Y \}$$

is a basis for the product topology $\mathcal{T}_{X\times Y}$ on $X\times Y$.

9. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be (nonempty) topological spaces. Let $\mathcal{T}_{X \times Y}$ be the product topology on $X \times Y$. Suppose that the topologies \mathcal{T}_X and \mathcal{T}_Y are induced by metrics d_X on X and d_Y on Y. Show that the product topology is induced by the metric

$$d_{X \times Y}: \ (X \times Y) \times (X \times Y) \longrightarrow \mathbb{R}$$

$$d_{X \times Y} \Big((x_1, y_1), (x_2, y_2) \Big) = \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}.$$

- 10. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be (nonempty) topological spaces. Let $\mathcal{T}_{X \times Y}$ be the product topology on $X \times Y$.
 - (a) Define the projection map π_X by

$$\pi_X: X \times Y \to X$$
$$\pi_X(x, y) = x$$

Show that the projection map π_X is continuous.

- (b) Show that the projection map π_X is open.
- (c) Fix a point $y \in Y$. Consider the map

$$f_X: X \to X \times Y$$

 $f_X(x) = (x, y)$

Is the map f_X necessarily continuous?

(d) Is the map f_X necessarily open?

Bonus Problems (Optional): Coarser and finer topologies

10. Consider the following definitions.

Definition (Coarser topology; finer topology). Let X be a set. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X. If $\mathcal{T}_1 \subseteq \mathcal{T}_2$, then the topology \mathcal{T}_1 is said to be *coarser* than \mathcal{T}_2 , and the topology \mathcal{T}_2 is said to be *finer* than the topology \mathcal{T}_1 .

- (a) Let X be a set. Show that the indiscrete topology on X is coarser than any other topology on X.
- (b) Let X be a set. Show that the discrete topology on X is finer than any other topology on X.
- 11. Let X be a set. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X. Show that the following statements are equivalent.
 - $\mathcal{T}_1 \subseteq \mathcal{T}_2$
 - The identity map $I:(X,\mathcal{T}_2)\to (X,\mathcal{T}_1)$ is continuous
 - The identity map $I:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ is open
- 12. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$ be a function.
 - (a) Suppose that f is continuous. Show that f will still be continuous if we replace \mathcal{T}_X by any finer topology on X, or if we replace \mathcal{T}_Y with any coarser topology on Y.
 - (b) Suppose that f is an open map. Show that f will still be open if we replace \mathcal{T}_X by any coarser topology on X, or if we replace \mathcal{T}_Y by any finer topology on Y.
- 13. Let (X, \mathcal{T}_X) be a topological space, and let $S \subseteq X$. Show that the subspace topology \mathcal{T}_S is the coarsest topology that makes the inclusion map $i: S \to X$ continuous. (In other words, show that if \mathcal{T} is any topology on S such that $i: (S, \mathcal{T}) \to (X, \mathcal{T}_X)$ is continuous, then $\mathcal{T}_S \subseteq \mathcal{T}$.)
- 14. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Show that the product topology $\mathcal{T}_{X\times Y}$ on $X\times Y$ is the coarsest topology on $X\times Y$ that makes the projection maps π_X and π_Y continuous.

Bonus Problems (Optional): The p-adic topology

15. Let p be a prime number. For $q \in \mathbb{Q}$, define the p-adic absolute value

$$|q|_p = \left\{ \begin{array}{ll} 0, & \text{if } q = 0 \\ p^{-r}, & \text{if } q = p^r \frac{a}{b}, \quad a,b \in \mathbb{Z}, \text{ neither } a \text{ nor } b \text{ are divisible by } p. \end{array} \right.$$

- (a) Prove that, for $x, y \in \mathbb{Q}$, $|x + y|_p \le \max\{|x|_p, |y|_p\}$.
- (b) Under what conditions on x and y will $|x + y|_p = \max\{|x|_p, |y|_p\}$?
- (c) Prove that the function $d_p(x,y) = |x-y|_p$ defines a metric on \mathbb{Q} (called the *p-adic metric*).
- (d) If p were a composite number, would this function d_p still be a metric?
- (e) Suppose the definition of $|q|_p$ were changed by replacing p^{-r} with p^r . Would d_p still define a metric?
- (f) Let p=3. Describe the balls $B_9(0),\,B_1(0),\,$ and $B_{\frac{1}{2}}(0)$ in the 3-adic metric.