Review Problems

- 1. Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces and that $f : X \to Y$ is a continuous function. Let $A \subseteq X$ be a subset of X, endowed with the subset topology \mathcal{T}_A . Show that the restriction $f|_A$ of f to A is continuous, viewed as a map from (A, \mathcal{T}_A) to (Y, \mathcal{T}_Y) .
- 2. Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces and that $f: X \to Y$ is a function.
 - (a) Suppose that A and B are **open** subsets of X, such that $A \cup B = X$ and $f|_A$ and $f|_B$ are both continuous (with respect to the subspace topologies). Prove that f is continuous.
 - (b) Now suppose that A and B are **arbitrary** subsets of X, such that $A \cup B = X$ and $f|_A$ and $f|_B$ are both continuous. Either prove that f is continuous, or show by counterexample that f need not be continuous.
- 3. Let (X, \mathcal{T}) be a topological space, and $A \subseteq X$ a subset.
 - (a) Prove or find a counterexample: if A is connected, then X is connected.
 - (b) Prove or find a counterexample: if X is connected, then A is connected.
- 4. Let (X, \mathcal{T}) be a Hausdorff topological space, and let $A \subseteq X$ be a finite subset containing at least two elements. Show that A is disconnected.
- 5. Let $X = \{a, b, c, d\}$. Let \mathcal{T} be the topology on X

 $\mathcal{T} = \{ \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X \}.$

Determine which of following subsets are connected, and which are disconnected.

- (a) X (b) $\{b, c\}$ (c) $\{a, b\}$ (d) $\{a, b, c\}$
- 6. Let (X, \mathcal{T}) be a topological space. Suppose that A and B are connected subsets of X with $A \cap B \neq \emptyset$.
 - (a) Show that $A \cup B$ is connected.
 - (b) Show by example that $A \cap B$ may be disconnected. *Hint:* Consider subsets of \mathbb{R}^2 .

7. (Challenge Problem).

Definition (Sequential continuity). Let $f : X \to Y$ be a continuous function of topological spaces. Then f is called *sequentially continuous* if for any convergent sequence $(x_n)_{n \in \mathbb{N}}$ in X, the sequence $(f(x_n))_{n \in \mathbb{N}}$ converges and

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

You proved on Quiz #7 that continuous functions are sequentially continuous. You proved moreover on Worksheet #4 that, if X and Y are metric spaces, a function is continuous if and only if it is sequentially continuous. In this problem, we will see that the converse does **not** hold for general topological spaces.

(a) Recall that a set S is *countable* if there exists an injective function $S \to \mathbb{N}$. Such sets are either finite or countably infinite. Define a collection of subsets of \mathbb{R}

$$\mathcal{T}_{cc} = \{ \varnothing \} \cup \{ U \subseteq \mathbb{R} \mid \mathbb{R} \setminus U \text{ is countable } \}.$$

Show that \mathcal{T}_{cc} is a topology on \mathbb{R} , called the *co-countable topology*.

- (b) Let $(a_n)_{n \in \mathbb{N}}$ be a sequence in $(\mathbb{R}, \mathcal{T}_{cc})$. Show that $(a_n)_{n \in \mathbb{N}}$ converges if and only if it is *eventually* constant. This means there is some $N \in \mathbb{N}$ and $x \in \mathbb{R}$ so that $a_n = x$ for all $n \ge N$.
- (c) Let \mathcal{T}_{dsc} denote the discrete topology on \mathbb{R} . Let $I : \mathbb{R} \to \mathbb{R}$ be the identity map. Show that the map of topological spaces

$$I: (\mathbb{R}, \mathcal{T}_{cc}) \to (\mathbb{R}, \mathcal{T}_{dsc})$$

is **not** continuous.

(d) Show that the map of topological spaces $I : (\mathbb{R}, \mathcal{T}_{cc}) \to (\mathbb{R}, \mathcal{T}_{dsc})$ is sequentially continuous.