Review Problems

- 1. Let (X, \mathcal{T}) be a topological space. On Worksheet #9 Problem 1(b), you proved that, if X is Hausdorff, then all singleton sets $\{x\}$ are closed. Prove or give a counterexample: If all singleton sets $\{x\}$ are closed, then X is Hausdorff.
- 2. Consider the real numbers \mathbb{R} with the cofinite topology \mathcal{T}_{cf} .
 - (a) Consider the constant sequence $1 \ 1 \ 1 \ 1 \ 1 \ \cdots$. To which $x \in \mathbb{R}$ (if any) does this sequence converge?
 - (b) Consider the alternating sequence $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$. To which real numbers x (if any) does this sequence converge?
 - (c) Consider the sequence of natural numbers $1\ 2\ 3\ 4\ 5\ 6\ \cdots$. To which real numbers x (if any) does this sequence converge?
 - (d) In general, let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers such that $\{a_n \mid n \in \mathbb{N}\}$ is infinite. To which real numbers x (if any) does this sequence converge?
 - (e) Now consider a sequence $(a_n)_{n \in \mathbb{N}}$ such that $\{a_n \mid n \in \mathbb{N}\}$ is is finite. Under what conditions does this sequence converge? To what real numbers does it converge?
- 3. (Challenge Problem). Suppose (X, d) is a metric space, and $A \subseteq X$. We proved that, if $x \in \overline{A}$, then there is some sequence of points $(a_n)_{n \in \mathbb{N}}$ in A that converge to x. In this problem, we will see that this property does **not** hold for general topological spaces.
 - (a) Recall that the *co-countable* topology on \mathbb{R} is the topology

 $\mathcal{T}_{cc} = \{\emptyset\} \cup \{ U \subseteq \mathbb{R} \mid \mathbb{R} \setminus U \text{ is countable } \}.$

Let $A \subseteq \mathbb{R}$ be any subset of \mathbb{R} . What is the closure of \mathbb{R} if A is (i) countable, or (ii) uncountable?

(b) Let A = (0, 1), so $\overline{A} = \mathbb{R}$. Show that, for any $x \in \overline{A} \setminus A$, there is **no** sequence of points in A that converge to x.

Bonus Problems: first countable spaces

- 1. **Definition (First countable spaces).** A topological space (X, \mathcal{T}) is called *first countable* if each point $x \in X$ has a *countable neighbourhood basis*. This means, for each $x \in X$, there is a countable collection $\{N_i\}_{i\in\mathbb{N}}$ of neighbourhoods of x with the property that, if N is any neighbourhood of x, then there is some i such that $N_i \subseteq N$.
 - (a) Let (X, d) be a metric space. Show that the topology induced by d is first countable.
 - (b) Let X be a set with the discrete topology. Show that X is first countable.
 - (c) Let X be a set with the indiscrete topology. Show that X is first countable.
 - (d) Let X be the real numbers \mathbb{R} with the cofinite topology. Show that X is not first countable.
 - (e) Let X be the real numbers \mathbb{R} with the co-countable topology. Show that X is not first countable.
 - (f) Let (X, \mathcal{T}) be a first countable topological space. Show that any subspace of X (with the subspace topology) is first countable.
 - (g) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be first countable topological spaces. Show that their product $X \times Y$ (with the product topology) is first countable.
 - (h) Let X be a first countable space, and let $A \subseteq X$. Show that, given any $x \in \overline{A}$, there is some sequence of points in A that converges to x.
 - (i) Let (X, \mathcal{T}_X) be a first countable topological space, and let (Y, \mathcal{T}_Y) be any topological space. Show that a function $f: X \to Y$ is continuous if and only if it is sequentially continuous.