Review Problems

1. Let (X, \mathcal{T}) be a topological space, and let $S \subseteq X$ be a subset. Suppose that the subspace topology on S is the discrete topology.
(a) Prove or give a counterexample: S is closed as a subset of X.
(b) Prove or give a counterexample: The closure of S in X also has the discrete subspace topology.
2. Let (X, \mathcal{T}) be a topological space. Show that X is Hausdorff if and only if, for each $x \in X$,

$$
\{x\}=\bigcap_{U \text { a neighbourhood of } x} \bar{U} .
$$

3. Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces, and let $f: X \rightarrow Y$ be a function. Recall that the graph of f is defined to be the subset of $X \times Y$

$$
\{(x, f(x)) \in X \times Y \mid x \in X\} .
$$

Suppose that Y is Hausdorff. Show that, if f is continuous, then the graph of f is a closed subset of $X \times Y$ with respect to the subspace topology $\mathcal{T}_{X \times Y}$.
4. Consider \mathbb{R} with the Euclidean metric. Which of the following subsets are connected?

$$
\begin{aligned}
& \{x \in \mathbb{R} \mid d(x, 1)<1 \text { or } d(x,-1)<1\} \\
& \{x \in \mathbb{R} \mid d(x, 1) \leq 1 \text { or } d(x,-1)<1\} \\
& \{x \in \mathbb{R} \mid d(x, 1) \leq 1 \text { or } d(x,-1) \leq 1\}
\end{aligned}
$$

5. Definition (Convex subsets of \mathbb{R}^{n}). Let A be a subset of \mathbb{R}^{n} (with the Euclidean metric). Then A is called convex if $t x+(1-t) y \in A$ for every $x, y \in A$ and any $t \in[0,1]$.
Prove that any convex subset of \mathbb{R}^{n} is connected.
6. Let (X, \mathcal{T}) be a topological space. Let $\left\{A_{n} \mid n \in \mathbb{Z}\right\}$ be a family of connected subspaces of X such that $A_{n} \cap A_{n+1} \neq \varnothing$ for every n. Prove $\bigcup_{n \in \mathbb{Z}} A_{n}$ is connected.
7. Let (X, \mathcal{T}) be a topological space. Let $\left\{A_{n} \mid n \in \mathbb{N}\right\}$ be a family of connected subspaces in X such that $A_{n+1} \subseteq A_{n}$ for every $n \in \mathbb{N}$. Is $\bigcap_{n \in \mathbb{N}} A_{n}$ is necessarily connected?
8. (Challenge.) In this problem, we will construct a topological space that is Hausdorff but not metrizable. For any pair of coprime integers $a, b \in \mathbb{N}$ define

$$
N_{a, b}=\{a+k b \mid k \in \mathbb{N} \cup\{0\}\} \subseteq \mathbb{N} .
$$

Prove the following.
(a) The family $\mathcal{B}=\left\{N_{a, b} \mid a, b \in \mathbb{N}, \operatorname{gcd}(a, b)=1\right\}$ is a basis for a topology \mathcal{T} on \mathbb{N}.
(b) The topology \mathcal{T} is Hausdorff.
(c) Any mutliple of b is contained in the closure of $N_{a, b}$.
(d) For any pair of nonempty open sets in $A, B \in \mathcal{T}$ we have $\bar{A} \cap \bar{B} \neq \varnothing$.
(e) \mathcal{T} is not metrizable.

