Review Problems

- 1. Let (X, \mathcal{T}) be a topological space, and let $S \subseteq X$ be a subset. Suppose that the subspace topology on S is the discrete topology.
 - (a) Prove or give a counterexample: S is closed as a subset of X.
 - (b) Prove or give a counterexample: The closure of S in X also has the discrete subspace topology.
- 2. Let (X, \mathcal{T}) be a topological space. Show that X is Hausdorff if and only if, for each $x \in X$,

$$\{x\} = \bigcap_{\substack{U \text{ a neighbourhood of } x}} \overline{U}.$$

3. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $f : X \to Y$ be a function. Recall that the graph of f is defined to be the subset of $X \times Y$

$$\{ (x, f(x)) \in X \times Y \mid x \in X \}.$$

Suppose that Y is Hausdorff. Show that, if f is continuous, then the graph of f is a closed subset of $X \times Y$ with respect to the subspace topology $\mathcal{T}_{X \times Y}$.

4. Consider \mathbb{R} with the Euclidean metric. Which of the following subsets are connected?

$$\{x \in \mathbb{R} \mid d(x, 1) < 1 \text{ or } d(x, -1) < 1\}$$
$$\{x \in \mathbb{R} \mid d(x, 1) \le 1 \text{ or } d(x, -1) < 1\}$$
$$\{x \in \mathbb{R} \mid d(x, 1) \le 1 \text{ or } d(x, -1) \le 1\}$$

5. **Definition (Convex subsets of** \mathbb{R}^n). Let A be a subset of \mathbb{R}^n (with the Euclidean metric). Then A is called *convex* if $tx + (1 - t)y \in A$ for every $x, y \in A$ and any $t \in [0, 1]$.

Prove that any convex subset of \mathbb{R}^n is connected.

- 6. Let (X, \mathcal{T}) be a topological space. Let $\{A_n \mid n \in \mathbb{Z}\}$ be a family of connected subspaces of X such that $A_n \cap A_{n+1} \neq \emptyset$ for every n. Prove $\bigcup_{n \in \mathbb{Z}} A_n$ is connected.
- 7. Let (X, \mathcal{T}) be a topological space. Let $\{A_n \mid n \in \mathbb{N}\}$ be a family of connected subspaces in X such that $A_{n+1} \subseteq A_n$ for every $n \in \mathbb{N}$. Is $\bigcap_{n \in \mathbb{N}} A_n$ is necessarily connected?
- 8. (Challenge.) In this problem, we will construct a topological space that is Hausdorff but not metrizable. For any pair of coprime integers $a, b \in \mathbb{N}$ define

$$N_{a,b} = \{a + kb \mid k \in \mathbb{N} \cup \{0\}\} \subseteq \mathbb{N}.$$

Prove the following.

- (a) The family $\mathcal{B} = \{ N_{a,b} \mid a, b \in \mathbb{N}, \gcd(a, b) = 1 \}$ is a basis for a topology \mathcal{T} on \mathbb{N} .
- (b) The topology \mathcal{T} is Hausdorff.
- (c) Any multiple of b is contained in the closure of $N_{a,b}$.
- (d) For any pair of nonempty open sets in $A, B \in \mathcal{T}$ we have $\overline{A} \cap \overline{B} \neq \emptyset$.
- (e) \mathcal{T} is not metrizable.