1 Metric Spaces

Definition 1.1. Let X be a set. A metric on X is a function

$$
d: X \times X \longrightarrow \mathbb{R}
$$

satisfying the following conditions.
(M1) (Positivity). $d(x, y) \geq 0$ for all $x, y \in X$, and $d(x, y)=0$ if and only if $x=y$.
(M2) (Symmetry). $d(x, y)=d(y, x)$ for all $x, y \in X$.
(M3) (Triangle inequality). $d(x, y)+d(y, z) \geq d(x, z)$ for all $x, y, z \in X$.

The value $d(x, y)$ is sometimes called the distance from x to y.
A set X endowed with a metric d is called a metric space, and is denoted (X, d) (or simply X when the metric is clear from context).

Theorem 1.2. (The Euclidean Metric). Define

$$
d: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}
$$

as follows. For $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{n}\right)$, let

$$
\begin{aligned}
d(\bar{x}, \bar{y}) & =\|\bar{x}-\bar{y}\| \\
& =\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}} .
\end{aligned}
$$

Then d is a metric, called the Euclidean metric, and makes $\left(\mathbb{R}^{n}, d\right)$ into a metric space.
Proof. We need to verify that d satisfies the three conditions that define a metric.
Step 1. Verify that d satisfies condition (M1).

Step 2. Verify that d satisfies condition (M2).

Step 3. Explain why, to verify (M3), it's enough to check that

$$
(d(\bar{x}, \bar{y})+d(\bar{y}, \bar{z}))^{2} \geq d(\bar{x}, \bar{z})^{2}
$$

Step 4. Expand $(d(\bar{x}, \bar{y})+d(\bar{y}, \bar{z}))^{2}=(\|\bar{x}-\bar{y}\|+\|\bar{y}-\bar{z}\|)^{2}$.

Step 5. Expand

$$
\begin{aligned}
d(\bar{x}, \bar{z})^{2} & =(\bar{x}-\bar{z}) \cdot(\bar{x}-\bar{z}) \\
& =((\bar{x}-\bar{y})+(\bar{y}-\bar{z})) \cdot((\bar{x}-\bar{y})+(\bar{y}-\bar{z}))
\end{aligned}
$$

Step 6. Conclude that d satisfies (M3).

In-class Exercises

1. Determine whether the following functions define metrics on the corresponding sets. Rigorously justify your answers!
(a) Let $X=\mathbb{R}$. Define

$$
\begin{aligned}
d: \mathbb{R} \times \mathbb{R} & \longrightarrow \mathbb{R} \\
d(x, y) & =(x-y)^{2} .
\end{aligned}
$$

(b) Let $X=\mathbb{R}^{2}$. Define

$$
\begin{aligned}
d: \mathbb{R}^{2} \times \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
d(\bar{x}, \bar{y}) & =\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| .
\end{aligned}
$$

(c) Let X be any set. Define

$$
\begin{aligned}
d: X \times X & \longrightarrow \mathbb{R} \\
d(x, y) & = \begin{cases}0 & x=y \\
1 & x \neq y .\end{cases}
\end{aligned}
$$

2. Let (X, d) be a metric space, and let $Y \subseteq X$ be a subset. Show that the restriction $\left.d\right|_{Y \times Y}$ of d to $Y \times Y \subseteq X \times X$ defines a metric on Y. Conclude that any subset of a metric space inherits a metric space structure.
