1 Connected topological spaces

Definition 1.1. (Disconnected spaces; connected spaces.) A topological space (X, \mathcal{T}) is *disconnected* if there exist disjoint nonempty open subsets A and B in X such that $X = A \cup B$. Otherwise, X is called *connected*.

A subset A of X is said to be *connected* if it is connected in the subspace topology (A, \mathcal{T}_A) . This means ...

In-class Exercises

- 1. Show that the following topological spaces (with the Euclidean metric) are disconnected.
 - (a) \mathbb{N} (c) $(0,1) \cup \{5\}$ (e) \mathbb{Q}

 (b) $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ (d) $(0,1) \cup (1,3)$ (f) $\mathbb{R} \setminus \mathbb{Q}$
- 2. Prove that a topological space (X, \mathcal{T}) is disconnected if and only if there is subset A, with $\emptyset \subsetneq A \subsetneq X$, that is both open and closed.
- 3. Consider $\{0, 1\}$ as a topological space with the discrete topology. Show that a topological space (X, \mathcal{T}) is disconnected if and only if there is a continuous **surjective** function $X \to \{0, 1\}$.
- 4. (a) Prove that any set X with the indiscrete topology \mathcal{T} is connected.
 - (b) Let X be a set with at least two elements, endowed with the discrete topology. Prove that X is disconnected.
- 5. Suppose that (X, \mathcal{T}_X) is a **connected** topological space, and (Y, \mathcal{T}_Y) is any topological space. Let $f : X \to Y$ be a continuous map. Prove that if X is connected, then f(X) is connected. In other words, the continuous image of a connected space is connected.