## 1 Connected and path-connected topological spaces

**Definition 1.1. (Path-connected spaces.)** Consider the interval [0,1] as a topological space with the topology induced by the Euclidean metric. A topological space  $(X, \mathcal{T})$  is *path-connected* if, given any two points  $x, y \in X$ , there exists a continuous function  $\gamma : [0,1] \to X$  with  $\gamma(0) = x$  and  $\gamma(1) = y$ .

## **In-class Exercises**

- 1. Suppose that  $\{A_i\}_{i \in I}$  is a collection of connected subsets of a topological space  $(X, \mathcal{T})$ . Show that, if the intersection  $\bigcap_{i \in I} A_i$  is nonempty, then the union  $\bigcup_{i \in I} A_i$  is connected.
- 2. Let  $(X, \mathcal{T}_X)$  and  $(Y, \mathcal{T}_Y)$  be topological spaces.
  - (a) Suppose that  $X \times Y$  is connected in the product topology  $\mathcal{T}_{X \times Y}$ . Prove that X and Y are connected.
  - (b) Suppose that X and Y are connected, and suppose that  $(a,b) \in X \times Y$ . Prove that  $(X \times \{b\}) \cup (\{a\} \times Y)$  is a connected subset of the product  $X \times Y$  with the product topology  $\mathcal{T}_{X \times Y}$ .
  - (c) Suppose that X and Y are connected. Prove that  $X \times Y$  is connected in the product topology  $\mathcal{T}_{X \times Y}$ .
- 3. Let X be a (nonempty) topological space with the indiscrete topology. Is X necessarily pathconnected?
- 4. Recall that Sierpiński space is the space  $\mathbb{S} = \{0, 1\}$  with the topology  $\mathcal{T} = \{\emptyset, \{0\}, \{0, 1\}\}$ .
  - (a) Is S connected? (b) Is S path-connected?
- 5. Let  $(X, \mathcal{T})$  be a topological space. Show that, if X is path-connected, then X is connected. *Hint:* You may use the result from Homework #9 that the interval [0, 1] is connected.

6. Bonus (Optional). Recall that C(0, 1) denotes the set of continuous functions from the closed interval [0, 1] to  $\mathbb{R}$ , and that C(0, 1) is a metric space with metric

$$d_{\infty} : \mathcal{C}(0,1) \times \mathcal{C}(0,1) \longrightarrow \mathbb{R}$$
$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

Show that this metric space is path-connected, and therefore connected.

- 7. Bonus (Optional). This problem shows that the converse to Problem 5 fails.
  - Let X be the following subspace of  $\mathbb{R}^2$  (with topology induced by the Euclidean metric)

$$X = \{(1,0)\} \cup \bigcup_{n \in \mathbb{N}} L_n,$$

where  $L_n$  is the closed line segment connecting the origin (0,0) to the point  $(1,\frac{1}{n})$ .



- (a) Show that X is connected.
- (b) (Challenge). Show that X is not path-connected.
- (c) Would the space be path-connected if we added in the line segment from (0,0) to (1,0)?