1 Connected and path-connected topological spaces

Definition 1.1. (Path-connected spaces.) Consider the interval $[0,1]$ as a topological space with the topology induced by the Euclidean metric. A topological space (X, \mathcal{T}) is path-connected if, given any two points $x, y \in X$, there exists a continuous function $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$.

In-class Exercises

1. Suppose that $\left\{A_{i}\right\}_{i \in I}$ is a collection of connected subsets of a topological space (X, \mathcal{T}). Show that, if the intersection $\bigcap_{i \in I} A_{i}$ is nonempty, then the union $\bigcup_{i \in I} A_{i}$ is connected.
2. Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces.
(a) Suppose that $X \times Y$ is connected in the product topology $\mathcal{T}_{X \times Y}$. Prove that X and Y are connected.
(b) Suppose that X and Y are connected, and suppose that $(a, b) \in X \times Y$. Prove that $(X \times\{b\}) \cup(\{a\} \times Y)$ is a connected subset of the product $X \times Y$ with the product topology $\mathcal{T}_{X \times Y}$.
(c) Suppose that X and Y are connected. Prove that $X \times Y$ is connected in the product topology $\mathcal{T}_{X \times Y}$.
3. Let X be a (nonempty) topological space with the indiscrete topology. Is X necessarily pathconnected?
4. Recall that Sierpiński space is the space $\mathbb{S}=\{0,1\}$ with the topology $\mathcal{T}=\{\varnothing,\{0\},\{0,1\}\}$.
(a) Is \mathbb{S} connected?
(b) Is \mathbb{S} path-connected?
5. Let (X, \mathcal{T}) be a topological space. Show that, if X is path-connected, then X is connected. Hint: You may use the result from Homework $\# 9$ that the interval $[0,1]$ is connected.
6. Bonus (Optional). Recall that $\mathcal{C}(0,1)$ denotes the set of continuous functions from the closed interval $[0,1]$ to \mathbb{R}, and that $\mathcal{C}(0,1)$ is a metric space with metric

$$
\begin{aligned}
d_{\infty}: \mathcal{C}(0,1) \times \mathcal{C}(0,1) & \longrightarrow \mathbb{R} \\
d(f, g) & =\sup _{x \in[0,1]}|f(x)-g(x)|
\end{aligned}
$$

Show that this metric space is path-connected, and therefore connected.
7. Bonus (Optional). This problem shows that the converse to Problem 5 fails.

Let X be the following subspace of \mathbb{R}^{2} (with topology induced by the Euclidean metric)

$$
X=\{(1,0)\} \cup \bigcup_{n \in \mathbb{N}} L_{n},
$$

where L_{n} is the closed line segment connecting the origin $(0,0)$ to the point $\left(1, \frac{1}{n}\right)$.

(a) Show that X is connected.
(b) (Challenge). Show that X is not path-connected.
(c) Would the space be path-connected if we added in the line segment from $(0,0)$ to $(1,0)$?

