1 Products of compact spaces

In this handout, we will prove the following theorem.

Theorem 1.1. (Products of compact spaces). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Then $X \times Y$ is compact with respect to the product topology $\mathcal{T}_{X \times Y}$ if and only if both X and Y are compact.

In-class Exercises

- 1. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces. Suppose that their Cartesian product $X \times Y$ is compact with respect to the product topology $\mathcal{T}_{X \times Y}$. Prove that X and Y are compact.
- 2. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be compact topological spaces. Let \mathcal{U} be any open cover of $X \times Y$ (with the product topology).

For this exercise, we will call a subset $A \subseteq X$ good if $A \times Y$ is covered by a finite subcollection of open sets in \mathcal{U} . Our goal is to show that X is good.

- (a) Suppose that A_1, \ldots, A_r is a finite collection of good subsets of X. Show that their union is good.
- (b) Fix $x \in X$. For each $y \in Y$, explain why it is possible to find open sets $U_y \in X$ and $V_y \in Y$ so that $(x, y) \in U_y \times V_y$ and $U_y \times V_y$ is contained in some open set in \mathcal{U} .
- (c) Explain why there is a finite list of points $y_1, \ldots, y_n \in Y$ so that the sets $\{V_{y_1}, \ldots, V_{y_n}\}$ cover Y.
- (d) Define

$$U_x = U_{y_1} \cap U_{y_2} \cap \dots \cap U_{y_n}.$$

Show that U_x is a good set, and is an open subset of X containing x. This shows that every element $x \in X$ is contained in a good open set U_x .

(e) Consider the collection of open subsets $\{U_x \mid x \in X\}$ of X. Use the fact that X is compact to conclude that X is good.

Bonus Exercises (Optional): Local connectedness and path-connectedness

Definition (Local connectedness). Let (X, \mathcal{T}) be a topological space. Then X is locally connected at a point $x \in X$ if every neighbourhood U_x of x contains a connected open neighbourhood V_x of x. The space X is locally connected if it is locally connected at every point $x \in X$.

Definition (Local path-connectedness). Let (X, \mathcal{T}) be a topological space. Then X is *locally connected at a point* $x \in X$ if every neighbourhood U_x of x contains a path-connected open neighbourhood V_x of x. The space X is *locally path-connected* if it is locally path-connected at every point $x \in X$.

- 1. Let (X, \mathcal{T}) be a topological space, and let $x \in X$. Show that if X is locally path-connected at x, then it is locally connected at x. Conclude that locally path-connected spaces are locally connected.
- 2. Let $X = (0,1) \cup (2,3)$ with the Euclidean metric. Show that X is locally path-connected and locally connected, but is not path-connected or connected.
- 3. Let X be the following subspace of \mathbb{R}^2 (with topology induced by the Euclidean metric)

$$X = \bigcup_{n \in \mathbb{N}} \left(\left\{ \frac{1}{n} \right\} \times [0, 1] \right) \quad \bigcup \quad \left(\left\{ 0 \right\} \times [0, 1] \right) \quad \bigcup \quad \left([0, 1] \times \left\{ 0 \right\} \right).$$

Show that X is path-connected and connected, but not locally connected or locally path-connected.

4. (Challenge.) Consider the natural numbers \mathbb{N} with the cofinite topology. Show that \mathbb{N} is locally connected but not locally path-connected.