1 Homeomorphisms

Definition 1.1. (Homeomorphisms of topological spaces). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is a homeomorphism if

- f is continuous,
- f has an inverse $f^{-1}: Y \to X$, and
- f^{-1} is continuous.

The topological space (X, \mathcal{T}_X) is said to be *homeomorphic* to the topological space (Y, \mathcal{T}_Y) if there exists a homeomorphism $f : X \to Y$.

Two topological spaces are considered "the same" topological space if and only if they are homeomorphic.

In-class Exercises

- 1. (a) Let (X, \mathcal{T}_X) be a topological space. Show that X is homeomorphic to itself.
 - (b) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f : X \to Y$ a homeomorphism. Explain why $f^{-1} : Y \to X$ is also a homeomorphism. Conclude that X is homeomorphic to Y if and only if Y is homeomorphic to X. (We simply call the spaces "homeomorphic topological spaces").
 - (c) Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , and (Z, \mathcal{T}_Z) be topological spaces. Show that, if X is homeomorphic to Y, and Y is homeomorphic to Z, then X is homeomorphic to Z.

This exercise shows that homeomorphism defines an *equivalence relation* on topological spaces.

- 2. (a) Give an example of topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) and a map $f : X \to Y$ such that f is both continuous and invertible, but such that f^{-1} is not continuous.
 - (b) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f : X \to Y$ a map. Show that f is a homeomorphism if and only if it is a continuous, invertible, open map.
- 3. Determine which of the following properties are preserved by homeomorphism. In other words, suppose (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are homeomorphic topological spaces. For each of the following properties P, prove or give a counterexample to the statement "X has property P if and only if Y has property P".

(For some properties, you will need to assume that X and Y are metric spaces.)

(i)	discrete topology	(vii)	complete
(ii)	indiscrete topology	(viii)	sequentially compact
(iii)	Hausdorff	(iv)	compact
(iv)	regular		compact
(v)	number of connected components	(x)	bounded
(vi)	path-connected	(xi)	metrizable

Properties that are preserved by homeomorphisms are called *homeomorphism invariants*, topological invariants, or topological properties of a topological space.

- 4. Use the results of Problem 3 to explain why the following pairs of spaces are *not* homeomorphic.
 - (a) (0,1) and [0,1] (with the Euclidean metric)
 - (b) \mathbb{R} with the Euclidean metric and \mathbb{R} with the cofinite topology
 - (c) (0,2) and $(0,1] \cup (2,3)$ (with the Euclidean metric)
- 5. (Bonus). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $F : X \to Y$ a continuous function. Let G denote the graph of F (as a subspace of $X \times Y$). Prove that G is homeomorphic to X.