1 Sequential Compactness

Definition 1.1. (Subsequences.) Let (X, d) be a metric space, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Let

$$
0<n_{1}<n_{2}<\cdots<n_{i}<\cdots
$$

be an infinite sequence of strictly increasing natural numbers. Then $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ is called a subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$.

Proposition 1.2. Suppose that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence in a metric space (X, d) that converges to a point a_{∞}. Show that any subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ also converges to a_{∞}.

Definition 1.3. (Sequantially compact metric spaces; sequentially compact subsets.) A metric space (X, d) is called sequentially compact if every sequence in X has a convergent subsequence. Similarly, a subset $S \subseteq X$ is sequentially compact if every sequence of points in S has a subsequence that converges to a point in S.

By convention, the empty set \varnothing is considered sequentially compact.

Example 1.4. Give examples of sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ of real numbers with the following properties:
(a) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a subsequence that converges to 0 , and a subsequence that converges to 1 .
(b) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has no convergent subsequence.
(c) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is an unbounded sequence with a subsequence that converges to 0 .

In-class Exercises

1. Suppose that (X, d) is a sequentially compact metric space, and that $C \subseteq X$ is a closed subset. Prove that C is sequentially compact.
2. Let (X, d) be a metric space.
(a) Prove that every sequentially compact subset of X is
(i) closed,
(ii) bounded.
(b) Is it true that every closed and bounded subset of a metric space is sequentially compact?
3. (Optional). Recall that the space $\mathcal{C}([a, b])$ of continuous functions $f:[a, b] \rightarrow \mathbb{R}$ is a metric space with metric

$$
d_{\infty}(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)| .
$$

Determine whether $\mathcal{C}([a, b])$ is sequentially compact.
4. (Optional).
(a) Consider the sequence of real numbers

$$
0,1,0, \frac{1}{2}, 1,0, \frac{1}{3}, \frac{2}{3}, 1,0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1,0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1, \ldots
$$

What real numbers can be realized as the limit of a subsequence of this sequence?
(b) Is it possible to construct a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with subsequences converging to every real number $r \in \mathbb{R}$?

