1 Continuous functions on topological spaces

Definition 1.1. (Continuous functions of topological spaces.) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Then a map $f : X \to Y$ is called *continuous* if ...

2 Bases for topological spaces

Definition 2.1. (Basis of a topology.) Let (X, \mathcal{T}_X) be a topological space. Then we say that $\mathcal{B} \subseteq \mathcal{T}$ is a *basis* for the topology \mathcal{T} if every element of \mathcal{T} can be expressed as a union of elements of \mathcal{B} . We say that the basis \mathcal{B} generates the topology \mathcal{T} .

Remark 2.2. By convention, we say that the empty set \emptyset is the union of an empty collection of open sets.

In-class Exercises

1. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and fix $y_0 \in Y$. Show that the constant map

$$f: X \to Y$$
$$f(x) = y_0$$

is continuous.

- 2. (a) Let X be a set, and let \mathcal{T}_Y denote the discrete topology on X. Let (Y, \mathcal{T}_Y) be a topological space. Show that any map $f: X \to Y$ of these topological spaces is continuous.
 - (b) Let (X, \mathcal{T}_X) be a topological space. Let Y be a set, and let \mathcal{T}_{\bullet} denote the indiscrete topology on Y. Show that any map $f: X \to Y$ of these topological spaces is continuous.
- 3. Let (X, d) be a metric space. Show that the set of open balls

$$\mathcal{B} = \{ B_r(x_0) \mid x_0 \in X, r \in \mathbb{R}, r > 0 \}$$

is a basis for the topology induced by d.

4. Let (X, d_X) and (Y, d_Y) be metric spaces. Recall that $X \times Y$ is then a metric space with metric

$$d_{X \times Y} : (X \times Y) \times (X \times Y) \longrightarrow \mathbb{R}$$
$$d_{X \times Y} \Big((x_1, y_1), (x_2, y_2) \Big) = \sqrt{d_X (x_1, x_2)^2 + d_Y (y_1, y_2)^2}.$$

(a) Show that the set

 $\mathcal{B} = \{ U \times V \mid U \subseteq X \text{ is open}, V \subseteq Y \text{ is open} \}$

forms a basis for the topology induced by $d_{X \times Y}$. *Hint: Homework # 6 Problem 2(b).*

- (b) Is every open set in $X \times Y$ of the form $U \times V$ with $U \subseteq X$ is open and $V \subseteq Y$ is open ?
- 5. An advantage of identifying a basis for a topology is that many topological statements can be reduced to statements about the basis. As an example, prove the following theorem.

Theorem (Equivalent definition of continuity.) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let \mathcal{B}_Y be a basis for \mathcal{T}_Y . Prove that a map $f : X \to Y$ is continuous if and only if for every open set $U \in \mathcal{B}_Y$, the preimage $f^{-1}(U) \subseteq X$ is open.

6. (Optional).

(a) Consider the topology on \mathbb{R}^n induced by the Euclidean metric. Prove that the following set is a basis for \mathbb{R}^n .

 $\mathcal{B} = \{ B_{\epsilon}(x) \mid \epsilon > 0, \epsilon \text{ is rational}; x \in \mathbb{R}^n, \text{ all coordinates } x_i \text{ of } x \text{ are rational.} \}$

(b) Show that \mathbb{R}^n has uncountably many open sets, but that the basis \mathcal{B} is countable.