1 Hausdorff topological spaces; Sequences in topological spaces

Recall from Homework #7, Question 2:

Definition 1.1. (Hausdorff space.) A topological space (X, \mathcal{T}) is called *Hausdorff* if for any pair of distinct points x and y, there exist **disjoint** open sets $U \subseteq X$ and $V \subseteq X$ so with $x \in U$ and $y \in V$.

Definition 1.2. (Convergence topological spaces.) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in a topological space (X, \mathcal{T}) . Then we say that that $(a_n)_{n\in\mathbb{N}}$ converges to a point $a_{\infty} \in X$, and we write $\lim_{n\to\infty} a_n = a_{\infty}$, if ...

In-class Exercises

- 1. (a) Give an example of a topological space (X, \mathcal{T}) and a point $x \in X$ such that the set $\{x\}$ is not closed.
 - (b) Let (X, \mathcal{T}) be a **Hausdorff** topological space, and let $x \in X$. Prove that $\{x\}$ is a closed set.
- 2. (a) Give an example of a topological space (X, \mathcal{T}) , and a sequence $(a_n)_{n \in \mathbb{N}}$ in X that converges to (at least) two distinct points $a_{\infty} \in X$ and $\tilde{a}_{\infty} \in X$.
 - (b) Now suppose that (X, \mathcal{T}) is a **Hausdorff** topological space, and let $(a_n)_{n \in \mathbb{N}}$ be a sequence in X. Show that, if $(a_n)_{n \in \mathbb{N}}$ converges, then it converges to only one point a_{∞} .
- 3. Let C be a closed subset of a topological space (X, \mathcal{T}) . Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of points in C that converge to a point $a_{\infty} \in X$. Prove that $a_{\infty} \in C$.
- 4. (a) Show that the continuous image of a Hausdorff topological space need not be Hausdorff. Specifically, find topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) such that X is Hausdorff but Y is not Hausdorff, and a continuous **surjective** map $f : X \to Y$.
 - (b) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and assume that (Y, \mathcal{T}_Y) is Hausdorff. Show that, if there exists a continuous **injective** map $f : X \to Y$, then X must also be Hausdorff.