Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. Let $X = \{a, b, c, d\}$ with the topology

 $\mathcal{T} = \{ \varnothing, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \}.$

(a) Is X connected?

(b) Is X path–connected?

- (c) Find a proper subset of X that is connected, and a proper subset of X that is disconnected.
- 2. Let (X, \mathcal{T}) be a topological space. Show that any subset $A = \{x\} \subseteq X$ of a single element is connected.
- 3. (a) Show that, for $a, b \in \mathbb{R}$, the subsets \emptyset , $\{a\}, (a, b), (a, b], [a, b), [a, b], (a, \infty), (a, \infty), (\infty, b), (\infty, b], and \mathbb{R}$ of \mathbb{R} are all intervals in the sense of Problem b.
 - (b) Show that every interval must have one of these forms.
- 4. Let $X = \{0, 1\}$.
 - (a) Consider X as a topological space with the discrete topology. Rigorously show that X is not path-connected, and that X is not connected.
 - (b) Consider X as a topological space with the indiscrete topology. Rigorously show that X is connected and path-connected.
- 5. Let (X, \mathcal{T}) be a topological space. Suppose that there is a path γ from a point $x \in X$ to a point $y \in X$. Use γ to write down the formula for a path from $y \in X$ to $x \in X$. *Hint:* How can you modify γ in order to traverse the path in the opposite direction?
- 6. Let (X, \mathcal{T}) be a topological space, and let $x \in X$. Show that there is a path from x to x.
- 7. Show that \mathbb{R} is path connected: given real numbers a and b, there is a "straight-line" path from a to b given by the function

$$\gamma : [0, 1] \to \mathbb{R}$$

$$\gamma(t) = bt + a(t - 1)$$

Given points (a_1, a_2) and (b_1, b_2) in \mathbb{R}^2 , write down the formula for a "straight-line" connecting these points. What about two points in \mathbb{R}^n ?

Assignment questions

(Hand these questions in!)

- 1. Let (X, \mathcal{T}_X) be a topological space, and let $A \subseteq X$ be a connected subset. Let B be any subset such that $A \subseteq B \subseteq \overline{A}$. Prove that B is connected. *Remark:* This shows in particular that if A is connected, then so is \overline{A} .
- 2. (a) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f : X \to Y$ be a continuous map. Prove that if X is connected, then f(X) is connected. In other words, the continuous image of a connected space is connected.

(b) Recall the Intermediate Value Theorem from real analysis (which you may use without proof).

Intermediate Value Theorem. If $f : [a, b] \to \mathbb{R}$ is continuous and d lies between f(a) and f(b) (i.e. either $f(a) \le d \le f(b)$ or $f(b) \le d \le f(a)$), then there exists $c \in [a, b]$ such that f(c) = d.

Define a subset $A \subseteq \mathbb{R}$ to be an *interval* if whenever $x, y \in A$ and z lies between x and y, then $z \in A$.

Prove that any interval of \mathbb{R} is connected. *Hint:* Worksheet #14 Problem 4.

(c) Prove that any subset of \mathbb{R} that is not an interval is disconnected.

These last two results together prove:

Theorem (Connected subsets of \mathbb{R}). A subset of \mathbb{R} is a connected if and only if it is an interval.

- 3. (a) Let (X, \mathcal{T}_X) be a topological space, and $x, y, z \in X$. Suppose that there is a path in X from x to y, and a path from y to z. Show that there is a path from x to z. Hint: See Homework #7 Problem 2.
 - (b) Suppose that $\{A_i\}_{i \in I}$ is a collection of path-connected subsets of a topological space (X, \mathcal{T}) . Show that, if the intersection $\bigcap_{i \in I} A_i$ is nonempty, then the union $\bigcup_{i \in I} A_i$ is path-connected.
- 4. Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are path-connected topological spaces. Show that the product $X \times Y$ with the product topology $\mathcal{T}_{X \times Y}$ is path-connected.
- 5. (a) Prove the following result.

Theorem (Generalized Intermediate Value Theorem). Let (X, \mathcal{T}_X) be a connected topological space, and let $f : X \to \mathbb{R}$ be a continuous function (where the topology on \mathbb{R} is induced by the Euclidean metric). If $x, y \in X$ and c lies between f(x) and f(y), then there exists $z \in X$ such that f(z) = c.

(b) Prove that any continuous function $f : [0,1] \to [0,1]$ has a fixed point. (In other words, show that there is some $x \in [0,1]$ so that f(x) = x). *Hint:* Consider the function

$$g: [0,1] \to \mathbb{R}$$
$$g(x) = f(x) - x.$$