Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. Let $X=\{a, b, c, d\}$ with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{a, b\},\{c\},\{a, c\},\{a, b, c\},\{a, b, d\},\{a, b, c, d\}\} .
$$

(a) Is X connected?
(b) Is X path-connected?
(c) Find a proper subset of X that is connected, and a proper subset of X that is disconnected.
2. Let (X, \mathcal{T}) be a topological space. Show that any subset $A=\{x\} \subseteq X$ of a single element is connected.
3. (a) Show that, for $a, b \in \mathbb{R}$, the subsets $\varnothing,\{a\},(a, b),(a, b],[a, b),[a, b],(a, \infty),[a, \infty),(\infty, b),(\infty, b]$, and \mathbb{R} of \mathbb{R} are all intervals in the sense of Problem
(b) Show that every interval must have one of these forms.
4. Let $X=\{0,1\}$.
(a) Consider X as a topological space with the discrete topology. Rigorously show that X is not path-connected, and that X is not connected.
(b) Consider X as a topological space with the indiscrete topology. Rigorously show that X is connected and path-connected.
5. Let (X, \mathcal{T}) be a topological space. Suppose that there is a path γ from a point $x \in X$ to a point $y \in X$. Use γ to write down the formula for a path from $y \in X$ to $x \in X$. Hint: How can you modify γ in order to traverse the path in the opposite direction?
6. Let (X, \mathcal{T}) be a topological space, and let $x \in X$. Show that there is a path from x to x.
7. Show that \mathbb{R} is path connected: given real numbers a and b, there is a "straight-line" path from a to b given by the function

$$
\begin{gathered}
\gamma:[0,1] \rightarrow \mathbb{R} \\
\gamma(t)=b t+a(t-1)
\end{gathered}
$$

Given points $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ in \mathbb{R}^{2}, write down the formula for a "straight-line" connecting these points. What about two points in \mathbb{R}^{n} ?

Assignment questions

(Hand these questions in!)

1. Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and let $A \subseteq X$ be a connected subset. Let B be any subset such that $A \subseteq B \subseteq \bar{A}$. Prove that B is connected.
Remark: This shows in particular that if A is connected, then so is \bar{A}.
2. (a) Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces. Let $f: X \rightarrow Y$ be a continuous map. Prove that if X is connected, then $f(X)$ is connected. In other words, the continuous image of a connected space is connected.
(b) Recall the Intermediate Value Theorem from real analysis (which you may use without proof).

Intermediate Value Theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and d lies between $f(a)$ and $f(b)$ (i.e. either $f(a) \leq d \leq f(b)$ or $f(b) \leq d \leq f(a)$), then there exists $c \in[a, b]$ such that $f(c)=d$.
Define a subset $A \subseteq \mathbb{R}$ to be an interval if whenever $x, y \in A$ and z lies between x and y, then $z \in A$.
Prove that any interval of \mathbb{R} is connected. Hint: Worksheet \#14 Problem 4.
(c) Prove that any subset of \mathbb{R} that is not an interval is disconnected.

These last two results together prove:
Theorem (Connected subsets of \mathbb{R}). A subset of \mathbb{R} is a connected if and only if it is an interval.
3. (a) Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and $x, y, z \in X$. Suppose that there is a path in X from x to y, and a path from y to z. Show that there is a path from x to z.
Hint: See Homework \#7 Problem 2.
(b) Suppose that $\left\{A_{i}\right\}_{i \in I}$ is a collection of path-connected subsets of a topological space (X, \mathcal{T}). Show that, if the intersection $\bigcap_{i \in I} A_{i}$ is nonempty, then the union $\bigcup_{i \in I} A_{i}$ is path-connected.
4. Suppose that $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are path-connected topological spaces. Show that the product $X \times Y$ with the product topology $\mathcal{T}_{X \times Y}$ is path-connected.
5. (a) Prove the following result.

Theorem (Generalized Intermediate Value Theorem). Let $\left(X, \mathcal{T}_{X}\right)$ be a connected topological space, and let $f: X \rightarrow \mathbb{R}$ be a continuous function (where the topology on \mathbb{R} is induced by the Euclidean metric). If $x, y \in X$ and c lies between $f(x)$ and $f(y)$, then there exists $z \in X$ such that $f(z)=c$.
(b) Prove that any continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point. (In other words, show that there is some $x \in[0,1]$ so that $f(x)=x)$.
Hint: Consider the function

$$
\begin{aligned}
g:[0,1] & \rightarrow \mathbb{R} \\
g(x) & =f(x)-x .
\end{aligned}
$$

