Math 490 Homework #10 Thursday 21 November 2019

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Let X = {a,b,c,d} with the topology
T= {Q’ {a}v {a’v b}7 {C}, {a7 C}, {CL, b, C}, {CL, b, d}, {av b,c, d}}

(a) Is X connected? (b) Is X path—connected?

(c) Find a proper subset of X that is connected, and a proper subset of X that is disconnected.

2. Let (X,7T) be a topological space. Show that any subset A = {2} C X of a single element is
connected.

3. (a) Show that, for a,b € R, the subsets &, {a}, (a,b), (a,b], [a,b), [a, b], (a, 0), [a, 00), (00, b), (00, b],
and R of R are all intervals in the sense of Problem [bl

(b) Show that every interval must have one of these forms.

4. Let X ={0,1}.

(a) Consider X as a topological space with the discrete topology. Rigorously show that X is
not path-connected, and that X is not connected.

(b) Consider X as a topological space with the indiscrete topology. Rigorously show that X
is connected and path-connected.

5. Let (X, T) be a topological space. Suppose that there is a path v from a point z € X to a
point y € X. Use v to write down the formula for a path from y € X to x € X. Hint: How
can you modify v in order to traverse the path in the opposite direction?

6. Let (X,7) be a topological space, and let z € X. Show that there is a path from z to z.

7. Show that R is path connected: given real numbers a and b, there is a “straight-line” path
from a to b given by the function

~v:0,1] = R
y(t)=bt+a(t—1)

Given points (a1, az) and (b1, by) in R?, write down the formula for a “straight-line” connecting
these points. What about two points in R™?

Assignment questions

(Hand these questions in!)

1. Let (X, 7x) be a topological space, and let A C X be a connected subset. Let B be any subset
such that A C B C A. Prove that B is connected.
Remark: This shows in particular that if A is connected, then so is A.

2. (a) Let (X, 7Tx) and (Y, Ty) be topological spaces. Let f : X — Y be a continuous map. Prove
that if X is connected, then f(X) is connected. In other words, the continuous image of
a connected space is connected.
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(b) Recall the Intermediate Value Theorem from real analysis (which you may use without
proof).

Intermediate Value Theorem. If
between f(a) and f(b) (i.e. either f(a)
there exists ¢ € [a,b] such that f(c) =d.

f [ b] — R is continuous and d lies
<d

F(b) or f(b) < d < f(a)), then

Define a subset A C R to be an interval if whenever z,y € A and z lies between x and v,
then z € A.
Prove that any interval of R is connected. Hint: Worksheet #14 Problem 4.

(c) Prove that any subset of R that is not an interval is disconnected.

These last two results together prove:

Theorem (Connected subsets of R). A subset of R is a connected if and only
if it is an interval.

3. (a) Let (X,7x) be a topological space, and z,y,z € X. Suppose that there is a path in X
from x to y, and a path from y to z. Show that there is a path from z to z.
Hint: See Homework #7 Problem 2.

(b) Suppose that {A;}icr is a collection of path-connected subsets of a topological space
(X,T). Show that, if the intersection (1),c; A; is nonempty, then the union |J;c; A; is
path-connected.

4. Suppose that (X, Tx) and (Y, Ty) are path-connected topological spaces. Show that the product
X x 'Y with the product topology Tx «y is path-connected.

5. (a) Prove the following result.

Theorem (Generalized Intermediate Value Theorem). Let (X,7x) be a
connected topological space, and let f : X — R be a continuous function (where
the topology on R is induced by the Euclidean metric). If z,y € X and c¢ lies
between f(x) and f(y), then there exists z € X such that f(z) =

(b) Prove that any continuous function f : [0,1] — [0, 1] has a fixed point. (In other words,
show that there is some x € [0,1] so that f(z) = z).
Hint: Consider the function

g:[0,1] =R
o) = f(z) — .
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