Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let (X, \mathcal{T}) be a topological space.
 - (a) Let (X, \mathcal{T}) be a topological space. Explain why the condition that X is compact is stronger than the assumption that X has a finite open cover.
 - (b) Show that every topological space has a finite open cover. *Hint:* What is the first axiom of a topology?
- 2. Let (X, \mathcal{T}) be a topological space, and $A \subseteq X$ a subset. Prove that the two following definitions of compactness are equivalent.
 - The subset A is *compact* if it is a compact topological space with respect to the subspace topology \mathcal{T}_A .
 - The subset A is *compact* if it satisfies the following property: for any collection of open subsets $\{U_i\}_{i \in I}$ of X such that $A \subseteq \bigcup_{i \in I} U_i$, there is a finite subscollection U_1, U_2, \ldots, U_n such that $A \subseteq \bigcup_{i=1}^n U_i$.
- 3. Give an example of a subsets $A \subseteq B$ of \mathbb{R} such that ...
 - (a) A is compact, and B is noncompact
 - (b) B is compact, and A is noncompact
- 4. Determine the connected components of \mathbb{R} with the following topologies (see Problem 1).
 - (a) the topology induced by the Euclidean metric
 - (b) the discrete topology
 - (c) the indiscrete topology
 - (d) the cofinite topology

Assignment questions

(Hand these questions in!)

- 0. (Optional). Submit your Math 490 course evaluation!
- 1. **Definition (Connected components of a topological space).** Let (X, \mathcal{T}_X) be a topological space. A subset $C \subseteq X$ is called a *connected component* of X if
 - (i) C is connected;
 - (ii) if C is contained in a connected subset A, then C = A.
 - (a) Show that any connected component of X is closed. (*Hint*: Homework #10, Problem 1).
 - (b) Let $x \in X$. Show that the set

$$\bigcup_{\substack{A \text{ is a connected set,} \\ x \in A}} A$$

is a connected component of X.

- (c) Show that X is the **disjoint union** of its connected components. In other words, show that every point of X is contained in one, and only one, connected component.
- (d) Determine the connected components of Q (with the Euclidean metric). (Remember to rigorously justify your answer!)
- (e) Deduce from the example of \mathbb{Q} that connected components need not be open.
- (f) Suppose that X has the property that every point has a connected neighbourhood. Show that the connected components of X are open.
- 2. Suppose that (X, \mathcal{T}) is a topological space, and that C and D are compact subsets.
 - (a) Show that $C \cup D$ is compact.
 - (b) Suppose that X is Hausdorff. Show that $C \cap D$ is compact.
- 3. Prove the following result. This theorem is a major reason we care about compactness!

Theorem (Generalized Extreme Value Theorem). Let X be a nonempty compact topological space, and let $f: X \to \mathbb{R}$ be a continuous function (where \mathbb{R} has the standard topology). Then $\sup(f(X)) < \infty$, and there exists some $z \in X$ such that $f(z) = \sup(f(X))$. That is, f achieves its supremum on X.

- 4. (a) Let (X, d) be a metric space. Suppose that (a_n)_{n∈ℕ} is a sequence in X that contains no convergent subsequence. Prove that, for every x ∈ X, there is some ε_x > 0 such that B_{ε_x}(x) contains only finitely many points of the sequence.
 - (b) Prove that any compact metric space is sequentially compact.

Combined with Homework #5 Problem 5, this exercise proves:

Theorem (Compactness vs sequential compactness in metric spaces). Let (X, d) be a metric space. Then X is compact if and only if X is sequentially compact.

(Neither direction of this theorem holds, however, for arbitrary topological spaces!)

Combined with Worksheet #8, Problem 2, this exercise proves:

Theorem (Compactness in \mathbb{R}^n). Endow \mathbb{R}^n with the Euclidean metric. A subspace $S \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.

- 5. **Definition (Regular topological spaces).** A topological space X is called *regular* if, for every point $x \in X$ and every nonempty closed set C that does not contain x, there exist disjoint open sets U and V such that $x \in U$ and $C \subseteq V$.
 - (a) Let X be a topological space with the T_1 property. Explain why the condition that X is regular is stronger than the condition that X is Hausdorff. (A space that is both regular and T_1 is said to satisfy the T_3 property.)
 - (b) Suppose that the topology on a space X is induced by a metric d. Prove that X is regular.
 - (c) Suppose that X is a compact, Hausdorff topological space. Prove that X is regular.