Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. (a) Give an example of a metric space and a subset that is both open and closed. Give an example of a subset that is neither open nor closed.
 - (b) Recite the Topologist Scout Oath:

"On my honour, I will do my best to never claim to prove a set is closed by showing that it is not open, and to never claim to prove a set is open by showing that it is not closed."

- 2. Let X and Y be sets, and $f: X \to Y$ any function. Show that $f^{-1}(Y) = X$, and $f^{-1}(\emptyset) = \emptyset$.
- 3. Rigorously prove that the following functions are continuous.

(a) f(x) = 5 (b) f(x) = 2x + 3 (c) $f(x) = x^2$

(d) f(x) = g(x) + h(x), for continuous functions g and h.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2 + 2$. Find the inverse images of the following sets, and verify that they are open.

(a) \mathbb{R} (b) (-1,1) (c) (2,3) (d) $(6,\infty)$

- 5. Let (X,d) be a metric spaces. Let $g:X\to X$ be the *identity function*, given by g(x)=x for all $x\in X$. Prove that g is continuous.
- 6. See the definition of accumulation points and isolated points in Problem (5) below. Let $X = \mathbb{R}$. Find the set of accumulation points and the set of isolated points for each of the following subsets of X.

(a) $S = \{0\}$ (b) S = (0,1) (c) $S = \mathbb{Q}$ (d) $S = \{\frac{1}{n} \mid n \in \mathbb{N}\}$

Assignment questions

(Hand these questions in!)

1. Let $f: X \to Y$ be a function of sets X and Y. Let $A \subseteq X$ and $C \subseteq Y$. For each of the following, determine whether you can replace the symbol \square with $\subseteq, \supseteq, =$, or none of the above. Justify your answer by giving a proof of any set-containment or set-equality you claim. If set-equality does not hold in general, give a counterexample.

(a) $A \square f^{-1}(f(A))$ (b) $C \square f(f^{-1}(C))$

2. **Definition (The discrete metric.)** Given a set X, the discrete metric on X is the metric $d_X: X \times X \to \mathbb{R}$ defined by

$$d_X(x,x') = \begin{cases} 0, & x = x' \\ 1, & x \neq x' \end{cases}$$
 for all $x, x' \in X$.

Let (X, d) be a metric space with the discrete metric.

- (a) Show that, for each $x \in X$, the singleton set $\{x\}$ is open.
- (b) Show that **every** subset of X is both open and closed.
- (c) Let (Y, d_Y) be any metric space. Prove that **every** function $f: X \to Y$ is continuous.
- 3. Prove the following theorem.

Theorem (Equivalent definition of continuity.) Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f: X \to Y$ be a function. Then f is continuous if and only if it satisfies the following property: for every closed set $C \subseteq Y$, the preimage $f^{-1}(C)$ is closed.

- 4. **Definition (Open map).** Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is called *open* if for every open set $U \subseteq X$, its image $f(U) \subseteq Y$ is open.
 - (a) Give an example of metric spaces (X, d_X) and (Y, d_Y) and a function $f: X \to Y$ that is open, but not continuous.
 - (b) Give an example of metric spaces (X, d_X) and (Y, d_Y) and a function $f: X \to Y$ that is continuous, but not open.

For this question, you may simply state the examples without justification.

5. Consider the following definition.

Definition (Accumulation points and isolated points of a set.) Let (X, d) be a metric space, and let $S \subseteq X$ be a set. A point $x \in X$ is called an *accumulation point* of S if every ball $B_r(x)$ around x contains at least one point of S distinct from x. (Note that x may or may not be an element of S). An element $s \in S$ that is **not** an accumulation point of S is called an *isolated point* of S.

Let (X, d) be a metric space and let $S \subseteq X$ be a **closed** subset. Let x be an accumulation point of S. Show that x is contained in S.