Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. (a) Is \emptyset a bounded set?
 - (b) Show that any **finite** subset of a metric space is bounded.
- 2. Give examples of subsets of \mathbb{R} (with the Euclidean metric) that satisfy the following.
 - (a) open, and bounded (c) open, and unbounded
 - (b) closed, and bounded (d) closed, and unbounded
- 3. Consider \mathbb{R} with the Euclidean metric. For each of the following sets A, find Int(A), \overline{A} , ∂A , $Int(\mathbb{R} \setminus A)$, $\overline{\mathbb{R} \setminus A}$, and $\partial(\mathbb{R} \setminus A)$. See Question 3 for the definition of a boundary ∂ .
 - (a) \mathbb{R} (b) [0,1] (c) (0,1) (d) $\{0,1\}$ (e) $\{\frac{1}{n} \mid n \in \mathbb{N}\}$
- 4. Consider the real numbers \mathbb{R} with the Euclidean metric. Find examples of subsets A of \mathbb{R} with the following properties.
 - (a) $\partial(A) = \emptyset$
 - (b) A has a nonempty boundary, and A contains its boundary ∂A .
 - (c) A has a nonempty boundary, and A contains no points in its boundary
 - (d) A has a nonempty boundary, and A contains some but not all of the points in its boundary.
 - (e) A has a nonempty boundary, and $A = \partial A$.
 - (f) A is a **proper** subset of ∂A .
- 5. Let X be a nonempty set with the discrete metric. Let $A \subseteq X$. Show that $A = \text{Int}(A) = \overline{A}$. Conclude that $\partial A = \emptyset$.

Assignment questions

(Hand these questions in!)

- 1. Let $f: X \to Y$ be a function of sets X and Y. Let $A, B \subseteq X$. For each of the following, determine whether you can replace the symbol \Box with $\subseteq, \supseteq, =$, or none of the above. Justify your answer by giving a proof of any set-containment or set-equality you claim. If set-equality does not hold in general, give a counterexample.
 - (a) $f(A \cap B) \square f(A) \cap f(B)$ (b) $f(A \cup B) \square f(A) \cup f(B)$
 - (c) For $A \subseteq B$, $f(B \setminus A) \Box f(B) \setminus f(A)$
- 2. (a) Let (X, d) be a metric space, and $A \subseteq X$ a subset. Show that A is bounded if and only if, for every $x \in A$, there is some $R_x > 0$ such that $A \subseteq B_{R_x}(x)$.
 - (b) Let (X, d) be a metric space. Suppose that $(a_n)_{n \in \mathbb{N}}$ is a sequence in X converging to an element a_{∞} . Show that the set $\{a_n \mid n \in \mathbb{N}\}$ is a bounded subset of X.

3. Consider the following definition.

Definition (Boundary of a set A.) Let (X, d) be a metric space, and let $A \subseteq X$. Then the boundary of A, denoted ∂A , is the set $\overline{A} \setminus \text{Int}(A)$.

- Let (X, d) be a metric space, and let $A \subseteq X$.
- (a) Prove that $Int(A) = \overline{A} \setminus \partial A$.
- (b) Prove that $\partial A = \overline{A} \cap (\overline{X \setminus A})$.
- (c) Conclude from part (b) that ∂A is closed.
- (d) Additionally conclude from part (b) that $\partial A = \partial(X \setminus A)$.
- (e) Prove the following characteriziation of points in the boundary:

Theorem (An equivalent definition of ∂A). Let (X, d) be a metric space, and let $A \subseteq X$. Then $x \in \partial A$ if and only if every ball $B_r(x)$ about x contains at least one point of A, and at least one point of $X \setminus A$.

- (f) Deduce that we can classify every point of X in one of three mutually exclusive categories:
 - (i) interior points of A;
 - (ii) interior points of $X \setminus A$;
 - (iii) points in the (common) boundary of A and $X \setminus A$.
- 4. Prove the following equivalent definition of continuity.

Theorem (An equivalent definition of continuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Then a map $f: X \to Y$ is continuous if and only if

$$f\left(\overline{A}\right) \subseteq \overline{f(A)}$$
 for every subset $A \subseteq X$.