Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let (X, \mathcal{T}) be a topological space.
 - (a) Show that \mathcal{T} is a basis for \mathcal{T} .
 - (b) Suppose that \mathcal{B} is a basis for \mathcal{T} . Show that any collection of open sets in X containing \mathcal{B} is also a basis for \mathcal{T} .
- 2. Verify that the set of open intervals $(a,b) \subseteq \mathbb{R}$ is a basis for \mathbb{R} (with the Euclidean topology).
- 3. Let $X = \{a, b, c, d\}$. Let \mathcal{T} be the topology on X

$$\mathcal{T} = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}.$$

- (a) Which elements of X are limits of the constant sequence $x_n = d$? The constant sequence $x_n = a$? The constant sequence $x_n = b$?
- (b) Give an example of a sequence in X that does not converge.
- 4. Let $X = \{0, 1\}$. Find a topology on X for which the following sequence converges:

$$0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\cdots$$

5. Suppose that (X, \mathcal{T}) is a topological space, and that $(a_n)_{n \in \mathbb{N}}$ is a sequence in X that converges to $a_{\infty} \in X$. Prove that any subsequence of $(a_n)_{n \in \mathbb{N}}$ converges to $a_{\infty} \in X$.

Assignment questions

(Hand these questions in!)

- 1. Show that the continuous image of a Hausdorff topological space need not be Hausdorff. Specifically, find topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) such that X is Hausdorff but Y is not Hausdorff, and a continuous **surjective** map $f: X \to Y$. Remember to justify your solution!
- 2. Let (X, \mathcal{T}) be a topological space, and let \mathcal{B} be a basis for \mathcal{T} . For a subset $A \subseteq X$, prove the following.
 - (a) $Int(A) = \{a \in A \mid \text{there exists a basis element } B \text{ with } a \in B \subseteq A\}$
 - (b) $\overline{A} = \{x \in X \mid \text{any basis element } B \in \mathcal{B} \text{ containing } x \text{ must contain a point of } A\}$
- 3. (An extrinsic definition of a basis). Let X be a set and let \mathcal{B} be a collection of subsets of X such that
 - $\bullet \bigcup_{B \in \mathcal{B}} B = X$
 - If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ then there is some $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq (B_1 \cap B_2)$.

Let \mathcal{T} be the collection of subsets of X

$$\{U \mid U \text{ is a union of elements of } \mathcal{B} \}.$$

Prove that \mathcal{T} is a topology on X, and that \mathcal{B} is a basis for \mathcal{T} . We say that \mathcal{T} is the topology generated by the basis \mathcal{B} .

- 4. Consider the set \mathbb{R} with the **cofinite** topology. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in \mathbb{R} .
 - (a) Suppose that the sequence has the property that each term is repeated at most finitely many times. More precisely, suppose for each $r \in \mathbb{R}$ that $r = a_n$ for at most finitely many values of $n \in \mathbb{N}$. Which points of \mathbb{R} are limits of the sequence $(a_n)_{n \in \mathbb{N}}$?
 - (b) Now suppose the set $\{a_n \mid n \in \mathbb{N}\}$ is finite. Under what conditions will the sequence converge, and what will its limit(s) be?

Remember to justify your solutions!

5. (a) Consider the following definition.

Definition (The product topology). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Then the *product topology* $\mathcal{T}_{X\times Y}$ on $X\times Y$ is the collection of subsets of $X\times Y$ generated by the set

$$\mathcal{B} = \{U \times V \mid U \subseteq X \text{ is open, and } V \subseteq Y \text{ is open}\}.$$

This means that $\mathcal{T}_{X\times Y}$ consists of all unions of elements of \mathcal{B} .

Verify that $\mathcal{T}_{X\times Y}$ is indeed a topology on $X\times Y$, and that \mathcal{B} is a basis for this topology.

(b) Prove that the projection map $\pi_X: X \times Y \to X$ is both continuous and open with respect to the topologies $\mathcal{T}_{X \times Y}$ and \mathcal{T}_X . (The same argument shows that the projection map π_Y is both continuous and open).