Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let X, Y, Z be sets and let $f: X \to Y$ and $g: Y \to Z$ be functions.
 - (a) Show that if f and g are both surjective, then $g \circ f$ is surjective.
 - (b) Show that if f and g are both injective, then $g \circ f$ is injective.
 - (c) Show by example that, if we only assume one of f and g is surjective, then $g \circ f$ need not be surjective.
 - (d) Show by example that, if we only assume one of f and g is injective, then $g \circ f$ need not be injective.
- 2. Let $X = \{a, b, c, d\}$ with the topology

$$\mathcal{T} = \{ \varnothing, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \}.$$

- (a) Is X a T_1 -space?
- (b) Is X Hausdorff?
- (c) Find the interior, closure, and boundary of $\{a, c, d\}$.
- (d) Find the interior, closure, and boundary of $\{a, b\}$.

3. Consider the following subsets of $\mathbb R$

• R	• $[0,\infty)$	• $(-\infty, 0)$	• $\{-n \mid n \in \mathbb{N}\}$
• Ø	• (1,2)	• $(-\infty, 0]$	
• {0,1}	• $[1,2] \cup [3,\infty)$	• N	

Find the interior, closures, boundaries, and accumulation points of these subsets ...

- (a) \ldots when \mathbb{R} has the discrete topology.
- (b) \ldots when \mathbb{R} has the indiscrete topology.
- (c) \dots when \mathbb{R} has the Euclidean topology.
- (d) ... when \mathbb{R} has the topology $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$
- (e) \ldots when \mathbb{R} has the cofinite topology.
- (f) ... when \mathbb{R} has the topology $\mathcal{T} = \{\emptyset\} \cup \{U \subseteq \mathbb{R} \mid 0 \in U\}$.
- (g) ... when \mathbb{R} has the topology $\mathcal{T} = \{\mathbb{R}\} \cup \{U \subseteq \mathbb{R} \mid 0 \notin U\}.$

Assignment questions

(Hand these questions in!)

- 1. Let X be a topological space, and $A \subseteq X$. Prove that $\overline{A} = A \cup A'$, where A' is the set of accumulation points of A.
- 2. (a) Let $A \subseteq B$ be subsets of a topological space X. For each of the following statetments, either give a proof or a counterexample.

- (i) $\operatorname{Int}(A) \subseteq \operatorname{Int}(B)$ (ii) $\overline{A} \subseteq \overline{B}$ (iii) $\partial A \subseteq \partial B$
- (b) Let A be a subset of a topological space A. Show that $\partial(\text{Int}(A))$ is contained in ∂A , but show by example that these sets need not be equal.
- (c) Let A be a subset of a topological space A. Show that $\partial(\overline{A})$ is contained in ∂A , but show by example that these sets need not be equal.
- 3. Let (X, \mathcal{T}_X) be a topological space, and let $A, B \subseteq X$.
 - (a) Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (b) Show by example that $\overline{A \cap B}$ need not equal $\overline{A} \cap \overline{B}$.
- 4. Let $g, h : X \to Y$ be continuous maps between topological spaces. Show that if Y is Hausdorff, then the set $S = \{x \in X \mid g(x) = h(x)\}$ is closed.
- 5. Let (X, \mathcal{T}_X) be a topological space, and endow the product $X \times X$ with the product topology $\mathcal{T}_{X \times X}$. The set

$$\Delta = \{ (x, x) \mid x \in X \} \subseteq X \times X$$

is called the *diagonal* of $X \times X$. Prove that X is Hausdorff if and only if the diagonal Δ is a closed subset of $X \times X$.